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Abstract. Statistical shape analysis (SSA) is a powerful tool for study-
ing anatomical structures and their geometric variations in medical imag-
ing. In this work, we analyze real MRI-derived data to explore correla-
tions between geometric deformations and Joubert syndrome (JS). Build-
ing on prior SSA research, we tailor the preprocessing pipeline to an
in-house dataset and perform a detailed shape variability analysis using
principal component analysis (PCA). A random forest classifier is then
applied, achieving high classification accuracy. To ensure robustness, we
test multiple train-test splits and evaluate their impact. In addition, we
support clinical interpretation by providing visualizations that combine
3D and 2D information, resembling typical diagnostic paradigms on MRI
planes. Our work offers some methodological insights into shape-based
analysis and aims to serve as a practical tool for the medical commu-
nity. Code and data are openly available at: https://github.com/Franca-
exe/SSA-brainstem

Keywords: Statistical Shape Analysis- Brainstem Deformations- 3D
Shape Matching.

1 Introduction

SSA plays a crucial role in medical imaging, enabling the study of anatomical
structures and their geometric variations across different populations. This tool
has multifaceted applications, ranging from pathology identification and charac-
terization, creation of population templates, and image segmentation to surgical
planning.

In this work, we focus on the brainstem, a key central nervous system struc-
ture that connects the brain to the spinal cord, serving as the main gateway
for motor coordination and cognitive functions. We aim to analyze its geomet-
ric deformations and investigate potential correlations with JS, a rare congenital
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Fig.1. The multiple outputs of our pipeline: (a) binary classification discriminating
JS patients from CTR; (b) local deformations on 3D shape, with dilation in red and
compression in blue; (c¢) our 3D visualization of brainstem deformations (red) aligned
with MRI planes; d) projected 3D brainstem deformation (red) on MRI slice.

condition defined by a characteristic cerebellar and brainstem malformation pat-
tern known as "Molar Tooth Sign" (MTS) [20, 26].

Current clinical practice for the diagnosis of JS is primarily based on visual
inspection of 2D axial MRI slices and identification of MTS (Fig.1(a)). How-
ever, image orientation and the presence of artifacts can lead to incorrect or
inconclusive assessment, hindering the diagnostic process.

The dataset we examine consists of MRI-derived surface representations of
the brainstem. These surfaces exhibit a relatively low mesh density and a high-
frequency noise as we used a retrospective dataset that was not optimized for
the brainstem analysis, and there are currently no software tools focusing on
brainstem shape extraction. To characterize geometric variations, we focus on
efficiency and data refinement through a remeshing procedure and denoising
techniques to improve statistical analysis. We employ PCA to decompose shape
deformations into meaningful modes. We systematically analyze these compo-
nents to determine whether they encode anatomical features or pathological
differences. We further assess their predictive power in distinguishing JS pa-
tients from healthy controls (CTR), exploring the stability of our findings across
different dataset splits. Our contributions are threefold:

— A shape-based analysis of the brainstem from real MRI-derived data, with
a fine-tuned preprocessing tailored to our data (Sec. 3).

— A systematic evaluation of PCA components to identify pathology-relevant
variations and provide classification (Sec. 4).

— A tool for informative visualizations combining both 3D surface representa-
tions and 2D MRI planes (Sec. 5).

Through these analyses, whose outputs are summarized in Fig.1, we enhance
the understanding of anatomical variations in JS supporting the neuroradiolo-
gists in the complex task of detecting and characterizing such a peculiar patho-
logical condition. At the same time, we provide methodological insights into
shape-based statistical modeling for medical imaging, taking a step further in
the clinical translation of this powerful tool.
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2 Related Work

2.1 Discrete Shape Processing

We define shapes as two-dimensional smooth manifolds embedded in R3, denoted
using a calligraphic font (e.g., S). In its discrete representation, a surface S can
be approximated as a triangular mesh § = (Vs, Es), where Vs is the set of
ns € N vertices, Es is the set of edges that connect vertices and form triangular
faces. We define the matrix Xg € R”S*3, which contains the 3D coordinates of
the vertices in Vg, one row for each vertex.

The Laplace-Beltrami Operator (LBO) is the differential operator that ex-
tends the Laplacian to the manifold setting. We denote with Ag € R"$*"s the
matrix that discretizes the LBO of S [22,25]. The eigendecomposition of this
matrix gives rise to a set of eigenvectors @5 = {¢7, ¢35, ...} and the correspond-
ing ordered eigenvalues {\{ < A\§ < ...}. The truncated set of the first k € N
eigenvectors of the LBO is commonly used as a basis to approximate the func-
tions defined on S, similarly to the low-pass approximation provided by Fourier
analysis on Euclidean domains [14, 15, 31, 32].

Given a pair of shapes, §; and Sp, with a common global semantic struc-
ture (e.g. the same organ from two different patients), shape-matching aims to
find a pointwise correspondence IT15 : S — Sz, which assigns to each vertex
x € & a vertex y € Sy. Standard shape-matching solutions directly estimate
the vertex-to-vertex map ITy5. The functional maps framework [24] (FMAPs),
instead, focuses on the functional spaces defined on the surfaces, respectively
F(S1) and F(Sz). FMAPs exploits the fact that a given point-wise correspon-
dence II15 uniquely induces an operator Th; : F'(S3) — F(S1), between the
functional spaces, namely the functional map. Fixing a pair of bases for the
spaces F(S1) and F(S2), the functional map T5; is represented by a small ma-
trix Cyq which is easier to optimize with respect to II15. Then, from Cs;, FMAPs
propose a procedure to recover an approximation of I115. The common choice
for the bases is the truncated subset of k eigenvectors of the LBO. ZoomOut
[21] is a refinement technique that improves the quality of the estimated IT15 by
iteratively increasing the size of the bases. In [10], the authors proposed a version
of ZoomOut to obtain correspondence among a collection of shapes. In SSA, we
are interested in discovering the deformations that occur within a collection of
shapes {S;}?_;. To compute these deformations, it is usually necessary to fix a
reference shape M, estimate a correspondence between each shape and M, and
finally compute, for each vertex of M, the 3D displacement to its corresponding
vertex on each ;. Similarly to FMAPs, the shape difference operator [8,27] is a
compact functional-based representation of the deformation between two shapes.

2.2 Statistical Shape Analysis

SSA quantifies anatomical variations, providing morphological descriptors for
disease characterization, population modeling, and surgical planning. Traditional
statistical approaches, such as geometric morphometrics, rely on the placement
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of landmarks and the evaluation of their variability using rigid and non-rigid
registration methods. While providing a compact representation of the data,
landmark-based approaches suffer from a strong dependence on landmarks posi-
tioning and topological discrepancies [29]. To overcome these limitations, alter-
native landmarks-free methods have been proposed [1, 5]. Critical for SSA is the
role of shape matching, traditionally performed via methods such as General-
ized Procrustes Analysis and Thin-Plate Spline Warping [3]. However, since the
introduction of the functional maps framework [24] and its various extensions
[10,21], SSA has started to benefit from spectral methods, allowing accurate
correspondences, computational efficiency and great flexibility.

Besides being a cross-disciplinary field with an enormous range of appli-
cations, SSA plays a key role in medical imaging, supported by a rich body
of literature. Within the clinical framework, SSA can be used in the diagno-
sis, quantitative characterization and monitoring of pathological conditions, as
well as in the definition of population priors for segmentation or image elabora-
tions, in surgical planning and in prosthetic designs. Studies examine different
anatomical regions, such as brain structures [28, 30], skull and cranial bones [13,
19], cardiovascular system [2].

2.3 Joubert Syndrome and Central Nervous System

Joubert syndrome is a rare neurodevelopmental group of disorders with an inci-
dence of 1 in 100,000 |7, 23]. JS exhibits a significant heterogeneity from clinical,
neurogenetic and neuroimaging points of view. However, the MTS and vermian
hypoplasia (VH), resulting in distortion and enlargement of the fourth ventricle,
as depicted in Fig.1(a), are consistent findings in neuroimaging acquisitions [23,
26]. In particular, MTS is the hallmark of the syndrome, and its identification is
essential for a diagnosis, though its shape and extension may vary. As described
in [20], MTS is the consequence of a pattern of cerebellar and brainstem malfor-
mations, including midbrain widening, deepening of the interpeduncular cistern
and a thickening and horizontal orientation of the superior cerebellar peduncles.

MRI acquisitions with T1 and T2-weighted images (respectively, TIW and
T2W) [16] are the main diagnostic images, as JS identification is still mainly
based on visual inspection of a series of 2D images [12,23, 26|, which does not
fully account for the inherently 3D nature of the examined structures, in addi-
tion to the limitations introduced in (Sec. 1). Although JS alters the geometry
of anatomical structures, especially infratentorial ones, to the best of our knowl-
edge, no studies have applied statistical shape analysis in this context.

3 Analysis of the Collection of Shapes

Our study deals with a collection of brainstem shapes to perform SSA on it. As
described in the following, we leverage previous works, modifying fundamental
steps to target a clinically relevant context. In particular, we propose a novel pre-
processing step and fine-tune shape-matching initialization to efficiently achieve
accurate correspondences.
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3.1 Data Acquisition and Preparation

We consider an initial dataset of ngyp= 124 subjects, including n; = 32 JS
patients (mean age: 10.1 £ 8.6 years) and nergr= 88 healthy subjects (mean
age: 13.8 + 3.2 years), who undergo an MRI scan session. All images are ac-
quired on a 3T Achieva dStream MR scanner (Philips Medical Systems), and
the acquisition protocol includes a 3D T1W sequence (voxel size 1 x 1 x 1 mm?,
TR=8.3ms, TE=3.9ms; flip angle=8°). The study has been approved by the
Ethics Committee of E. Medea Research Institute. The legal representatives of
all the participants have provided written informed consent.

We extract binary brainstem masks from T1W images using FreeSurfer [4]
and visually inspect them to correct major segmentation errors and discard
poorly segmented subjects (4 in total). We crop the lower edge of the masks,
maintaining a fixed brainstem height of around 80 mm to account for the dif-
ferent positions of the field of view among subjects. Using 3D Slicer [6], we
convert segmentations to triangular meshes of around 6000 vertices. We remove
disconnected components, ensure manifoldness, and remesh shapes at around
3000 vertices by leveraging the preprocessing step from [18§].

3.2 Rigid Registration

After area normalization and barycenter alignment, which are canonical prepro-
cessing steps, we perform rigid registration of the shapes in our collection. Given
that the brainstem shapes primarily elongate along one direction, we estimate
the subject-specific primary axis as the first principal component of PCA com-
puted on the coordinates of the vertices. We align each pair of shapes by applying
the minimum rotation between their first principal directions. As explained in
(Sec. 4), this rotation angle represents an important feature that highly corre-
lates with the occurrence of the pathology. This registration step is designed
explicitly for the brainstem shapes. It allows us to substitute the computation-
ally inefficient estimation of the FMAPs initialization [17] (FPS in Table 1) with
a more efficient K-nearest neighbor (KNN) search in the 3D space, with K = 1.

3.3 Network Model

Our pipeline is inspired by previous methods [17, 19], where SSA is performed on
medical datasets exploiting FMAPs. These studies demonstrate that deforma-
tions extracted from a collection of shapes carry highly informative signals, and,
building on these results, we aim to utilize this strategy to recognize patients
affected by JS. As in [17], the first step of the pipeline employs ReMatching
[18], not only to rescale from high-density shapes but rather to reduce the high-
frequency noise introduced by the volume discretization in the MRI images,
granting a correspondence between shapes also at the original resolution. Next,
the rest of the pipeline builds upon the creation of a graph, where each node
corresponds to a shape S; and each edge encodes a correspondence 7;; encoded
by FMAPs between S; and S;. We test different numbers of edges in the graph
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Table 1. Comparison of KNN (Ours) and FPS ([17]) initialization methods for shape
collection matching at different numbers of network edges. Evaluation is reported in
terms of Chamfer Distance and computational runtime (time) expressed in seconds.

250 edges 500 edges 1000 edges 2000 edges
Method |Chamfer| time |Chamfer| time |Chamfer| time |Chamfer| time

KNN (Ours)| 0.02779 | 1054 | 0.02595 | 2048 | 0.02595 | 4308 | 0.02594 | 10990
FPS [17] ]0.02714 | 2460 | 0.02609 | 5826 | 0.02727 | 10863 | 0.02728 {19234

network (250, 500, 1000, 2000), always ensuring that the graph is connected. For
every edge T;; in the graph, the method also considers the edge in the opposite
direction T}; to enforce bijectivity. We evaluate these correspondences in (Sec.
5). The estimation of the correspondence is composed of the following steps.
We first rigidly align the shapes, as described in (Subsec. 3.2), and compute an
initial pointwise correspondence for all the shapes connected by an edge by ap-
plying the nearest neighbor search among vertices in R®. Then, we encode these
correspondences exploiting FMAPs and apply the ZoomOut algorithm for shape
collections [10] to refine them, improving the overall mapping precision. The ac-
curacy of the calculated functional maps directly impacts the reliability of shape
matching. Unlike [17], we follow the original Zoomout approach [21], upsampling
the map by only one eigenfunction at each step, reaching a final dimension of 60.
This choice is motivated by the expectation of significant non-isometric varia-
tions within the shape collection due to pathological deformations. By fostering
[9] in the iterative refinement process, we obtain the limit shape that is an ab-
stract functional representation of the average shape of the collection. As done
in [17,19], we select from the collection the shape which has the most similar
functional representation to the limit shape as the mean shape M. Fixing M
and exploiting the correspondence between M and each shape in the collection
provided by [9], we can compute a deformation field that deforms M into each
shape S;. Finally, we apply PCA to these deformation fields, obtaining a com-
pact representation of the variations that occur in the collection. In Table 1, we
report the evaluation of the estimated correspondence between M and each S;.
In the absence of ground truth correspondences, we adopt the Chamfer distance
[17] to evaluate the estimated correspondences, averaged over all S;.

4 Classification

In this section, we present some potential applications of SSA. Specifically, we
apply a PCA decomposition both to reduce the dimensionality of each subject
representation in the mapping model and to identify deformation patterns en-
coding relevant pathology-related information. PCA coefficients are subsequently
used for classification and visualization tasks.

All the PCA coefficients deriving from displacements and the rotation cor-
rections performed in the rigid alignment (Sec. 3.2) are fed to a Random Forest
(RF) classifier. As our dataset has an unbalanced patient/control ratio, we set
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Fig.2. Visualization of median shape deformations as it morphs into different JS
patients and a synthetically deformed FreeSurfer brainstem template [4] used to test
the method’s sensitivity to local changes. The rightmost panel shows variations along
the first PC with an explicative close up on local deformations.
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the RF weight coefficient w; = 3 to ensure greater importance to patient sam-
ples during training. For completeness, we also investigated the results setting it
to wy = 2.5 and 3.5. We evaluate the classifier performances applying an 8-fold
cross-validation procedure with a training/testing sample size split of 105 to 15
subjects, ensuring that each subject is included in the test set once. To highlight
the simplicity of the classifier while demonstrating the quality of the features
extracted by the network, we just set the number of trees in the forest to 100
without tuning any other parameter. All the experiments are performed using
Python 3.11.9-version code tested on a machine with an AMD RYZEN 5000
series 7 CPU, 16 GB RAM.

5 Results and Discussion

Table 1 reports the results in terms of the Chamfer distance of the experiments
for estimating the correspondence between the mean shape and each shape in
the collection (Sec. 3). Increasing the number of edges in the network improves
mapping accuracy, but with more than 500 edges the metric stabilizes showing
minimal improvements, while the computational time linearly increases with the
number of edges. Moreover, the FPS initialization based on FMAPs does not
yield better results in terms of Chamfer distance, while it increases computa-
tional cost. These results suggest that, in this context, a network with 500 edges
and our initialization method are the most cost-effective solutions. However, to
further maximize computational cost efficiency with minimal loss in quality, we
set the number of edges to 250 for the classification experiment.

Classification performances are summarized in Table 2, showing that a sim-
ple RF classifier correctly identifies JS patients based on the SSA-derived fea-
tures, without the need for specific parameter tuning. The 8-fold cross-validation
procedure, assessing generality, consistently achieves strong classification scores.
Analyzing the weights assigned to each feature, we observe that, in each cross-
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Table 2. Average classification metrics from 8-fold cross-validation for correctly clas-
sifying JS. In the table headers, we shortened Accuracy as Acc.

Weight| Acc. |Balanced Acc.|Precision |Sensitivity |Specificity| F1
2.5 (92.50 89.91 87.75 84.37 95.455 [84.626
3 |91.75 90.34 84.63 87.50 93.182 [84.375
3.5 |91.63 88.71 82.13 90.63 92.046 [85.375

validation fold, the RF model estimates that the rigid rotation (Subsec. 3.2)
contributes approximately 10% to correctly classify the subjects and is the sec-
ond most important feature. Moreover, we observe that the other highest con-
tributions are assigned to the first ten PCs, indicating that they capture the
most relevant deformations characterizing JS. This aligns with the PCA com-
pactness analysis, which shows that the first ten principal components, namely
the principal deformations, explain around 80% of the total shape variability,
primarily encoding localized deformations. Specifically, the first component rep-
resents dilation/contraction at the level of the pons (rightmost panel in Fig.2).
These results demonstrate that the implemented SSA pipeline correctly encodes
the deformation patterns associated with JS and that the proposed optimiza-
tion solutions improve the accuracy in assessing shape correspondences while
reducing the computational time, making the tool more efficient and flexible.

For completeness, we investigate statistical shape modeling (SSM) as a viable
alternative for representing shape variability within our dataset. Traditional SSM
methodologies are excluded due to inherent drawbacks, including strong prior as-
sumptions on shape variability and significant computational demands. Instead,
we test one of the latest learning-based approach in the field, namely Mesh2SSM
[11]. However, empirical evaluation shows that Mesh2SSM is approximately 24
times slower than our method and exhibits poor performance on limited sample
sizes, making it unsuitable for our aim of developing a lightweight and scalable
pipeline in a scenario with a small dataset.

We further expand the potential of our approach with different smart visual-
ization examples (both 3D and 2D), providing visualization of subject-specific de-
formation analysis results on the 3D shape (Fig.2), or integrating (Fig.1(c)) and
projecting (Fig.1(d)) this information onto the original anatomical images, sup-
porting clinicians in the diagnostic process. The visual inspection of the subject-
specific analysis (Fig.2) confirms that all of the major deformations reported for
each subject are located coherently with the main alterations associated with
JS, with the exception of the inferior bound. In particular, we reported reduc-
tions of the brainstem pons, alterations of the cerebellar peduncle interface and
dilatations of the mesencephalon.

The main limitations of our work are related to the use of MRI data and shape
extraction pipelines not optimized for the analysis of the brainstem, resulting in
noisy shapes, that can be further improved in future studies.
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6 Conclusion

This study applies an optimized, learning-free, and efficient SSA pipeline in the
context of a rare disease, where the available data is inherently limited. We
demonstrate the efficacy of SSA in modeling variations of a key structure of the
central nervous system (i.e. the brainstem) and in identifying deformation pat-
terns associated with JS. We show that PCA can be used to extract informative
features to identify pathological cases, taking a step further towards the clinical
translation of advanced analysis tools such as SSA. The proposed pipeline can
be further optimized to the medical image context, for example improving the
selection of the mean shape or testing different classifiers. Finally, we plan to
scale our pipeline to other brain structures and clinical conditions to build a
tool for the detection and quantitative characterization of brain malformations,
supporting both clinical practice and research.
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