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Abstract. Rapidly advancing multi-modal learning shows great promise
in medical image analysis, but challenges remain in the detection of jaw-
bone lesions. Existing general-purpose models fail to capture the rela-
tionships between anatomical contexts and spatial locations in CBCT
images, and the complexity of these models hinders interpretability. We
propose PolarDETR, a novel framework combining anatomical priors
and multi-modal alignment through: 1) Polar Text-Position Encoding
(PTPE), which links text to spatial coordinates via polar mapping,
2) Anatomical Constraint Learning, ensuring lesion detection within
anatomically plausible regions, and 3) Position Matching Optimization
for spatial consistency. Evaluated on 180 clinical cases (6929 CBCT
slices), our method achieves a state-of-the-art mAP of 93.66%, outper-
forming both single-modal (e.g., DETR at 89.35%) and multi-modal
models (e.g., CORA at 91.52%). Additionally, PolarDETR excels in
interpretability, with an ACS of 84.12% and PMS of 80.45%, demon-
strating its potential to enhance both detection performance and clini-
cal usability in real-world applications. Our code is available at https:
//github.com/Cxxxsky/PolarDETR.
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1 Introduction

Jawbone lesion detection is crucial for early diagnosis and treatment planning
in dental and maxillofacial medicine [17]. Lesions such as periapical lesions or
cysts often appear in various forms on CBCT images, making their identification
difficult. Accurate identification and localization are essential to prevent compli-
cations and improve outcomes, which makes advanced computational methods
vital to clinicians.
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Recent advancements in multi-modal learning have enhanced medical im-
age analysis, particularly for lesion detection. By integrating visual data from
CBCT images with textual information from clinical reports, multi-modal meth-
ods outperform traditional single-modal approaches, improving feature represen-
tation and enabling clinically relevant interpretation. Key innovations include
ConVIRT [24], which used contrastive learning for cross-modal alignment; GLo-
RIA [8] and MGCA [12], which employed spatial attention for feature correspon-
dence; and MedCLIP [20], which incorporated anatomical constraints to improve
consistency. Additionally, BioViL [1] redefined text encoding with hybrid models,
and MRM [5] introduced a low-level feature attenuation mechanism, benefiting
downstream tasks. These advancements emphasize the growing significance of
multi-modal learning in medical imaging.

Despite these advances, challenges remain in applying traditional multi-modal
fusion methods to specialized tasks like jawbone lesion detection. 1) Ineffective-
ness of General-Purpose Models: Common fusion methods, such as feature con-
catenation or Cartesian coordinate mapping [4], fail to consider the jawbone’s
anatomical geometry. These models, often pre-trained on natural images, strug-
gle to capture specific features like trabecular structures, bone density variations,
and lesion orientation [3], leading to incomplete lesion localization. 2) Reduced
Interpretability with Increasing Complexity: The complexity of modern multi-
modal models will decrease interpretability. Radiologists report difficulties in
understanding how deep models reach conclusions, with 38% of Artificial Intel-
ligence (AI)-generated findings distrusted due to lack of transparency [10]. This
"black-box" issue obscures critical diagnostic information, such as whether a
lesion is caused by bone density changes or adjacent tooth morphology.

To address these challenges, we propose PolarDETR, a novel method for
jawbone lesion detection that enhances both accuracy and interpretability. By
embedding clinical text-derived location information into the detection model’s
query space, PolarDETR aligns anatomical knowledge with CBCT images in
a polar coordinate framework, improving lesion localization while maintaining
interpretability. We also introduce an interpretability-as-a-service feature that
pairs anatomical heatmaps with textual data, enabling clinicians to understand
the rationale behind AI diagnoses and increasing trust in the model’s output.

2 Methodology

2.1 Overall Framework

An overview of the proposed framework is shown in Fig. 1. Our model is based
on the DEtection TRansformer (DETR) architecture for end-to-end object de-
tection [2]. It includes three key components for jawbone lesion detection: Polar
Text-Position Encoding (PTPE), Anatomical Constraint Learning, and Posi-
tion Matching Optimization. PTPE maps clinical text to spatial coordinates
in the CBCT image, aligning anatomical locations with geometric features.
Anatomical priors guide the detection process to ensure lesions are within plau-
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Fig. 1. The Overall Framework of Our PolarDETR.

sible regions, while Position Matching Optimization refines spatial alignment,
improving accuracy and interpretability.

2.2 Polar Text-Position Encoding

To effectively incorporate anatomical location information from clinical text into
image-based lesion detection in CBCT images, we introduce PTPE. This ap-
proach aligns the text and image representations in a shared feature space by
leveraging the spatial geometry of anatomical regions described in the clinical
text.

Anatomical Consistency with the Jaw Structure. The polar coordinate
system demonstrates superior congruence with jaw anatomy compared to Carte-
sian frameworks. Oriented on radial anatomical patterns (e.g., orientation of the
trabeculae, neurovascular bundles of the mental foramen), polar parameters (r, θ)
inherently encode biomechanical characteristics lost in rectangular grids [13].
Clinically, this spatial representation directly maps to diagnostic descriptions
(e.g., "5mm distal to mental foramen, third quadrant"), enhancing AI-output
interpretability through native clinical lexicon alignment [14].

Design of PTPE. To construct PTPE, we first extract key positional informa-
tion from the clinical text using a Named Entity Recognition (NER) model [11].
The PTPE pipeline includes an offline NER fine-tuning stage and an online
inference stage integrated with PolarDETR. This model identifies anatomical
terms (e.g., tooth numbers, quadrants) and their relationships. Critical elements
like tooth number, quadrant, and distance from reference points (e.g., mental
foramen), are parsed and converted into polar coordinates. The resulting PTPE
is a 3D vector represented by θ (angle from the position of the main symptom)
and r (radius from the description of the distance):

PTPE = [sin(θ), cos(θ), log(r + 1)] ∈ R3 (1)
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To ensure geometrical consistency, a standard coordinate system with the
chin foramen as the origin is defined, creating a polar coordinate system. To
align image-based queries with anatomical information, PTPE vectors are inte-
grated into DETR’s object queries. This approach narrows the model’s search
space, focusing on anatomically relevant regions, accelerating convergence, and
improving accuracy. The enhanced queries are computed as:

Q
′
= Q+Wp (2)

2.3 Anatomical Constraint and Position Matching Loss(AC-PML).

In this section, we introduce the AC-PML to improve the spatial accuracy of
object localization and anatomical consistency in jawbone CBCT images. By
combining anatomical understanding and precise alignment, we improve the lo-
calization of lesions and objects within the oral cavity.

Anatomical Constraint Learning. Anatomical constraint learning focuses
on aligning image features with predefined anatomical regions. Most methods
are handcrafted or use artificial prior information, lacking interpretability and
ignoring the anatomical structure of complex regions, such as jawbone [19]. We
define K anatomical regions, such as the alveolar bone and mandibular canal,
using binary masks {Mk}kk=1 [22]. These masks serve as anatomical references
for the model. For each image, we capture the relationship between image fea-
tures and anatomical regions by normalizing the similarity between the query
vector q and the average pooling of the anatomical mask Mk denoted as ak. The
association for each anatomical region is computed as follows:

αk =
exp(qTak)∑K
j=1exp(q

Tak)
, ak = AvgPool(Mk) (3)

Anatomical Loss Function. To enforce anatomical consistency, we introduce
an anatomical loss function based on Kullback-Leibler (KL) divergence [6] to
minimize the distance between the predicted anatomical distribution α and the
prior reflecting expected lesion locations αprior. This approach uses anatomical
priors to guide the model toward clinically plausible regions, ensuring detection
focuses on anatomically relevant areas—crucial in jawbone CBCT images, where
mislocalization will cause diagnostic errors. The anatomical loss is defined as:

Lanatomy = KL(α||αprior) (4)

Position Matching Learning. Previous research emphasizes the need to align
text and visuals in tasks like lesion localization, as misalignment reduces perfor-
mance [7]. Position-matching learning ensures spatial alignment between textual
descriptions and corresponding image regions. Given the extracted polar coordi-
nates (r, θ) from the text, we map these into a sector region Rtext on the image.
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The radial distance r is computed based on the pixel size and the text distance,
while θ is the polar angle corresponding to the mapped tooth position. To align
the predicted bounding box Bpred with the projected region Rtext, we introduce
a position-matching loss based on the Intersection over Union (IoU) [23] metric:

Lposition = 1− IoU(Bpred, Rtext) (5)

The final loss function combines anatomical constraint learning and posi-
tion matching learning, allowing more accurate and anatomically consistent pre-
dictions. By jointly optimizing these losses, the model is trained to focus on
anatomical regions and spatial alignment, improving localization and anatomi-
cal understanding in jawbone CBCT image analysis.

2.4 Interpretability Metrics

In medical image analysis, integrating multi-modal clinical data requires careful
evaluation of interpretability. To assess our lesion detection framework, we in-
troduce two evaluation metrics: the Anatomical Consistency Score (ACS) and
the Position Matching Score (PMS). These metrics quantify the anatomical
plausibility and spatial alignment between the clinical text and image regions.
As shown in Fig. 2, after generating detection results, the model evaluates inter-
pretability by comparing the detected lesions with both predefined anatomical
regions and clinical semantic mappings.

Fig. 2. Evaluation of Interpretability: Anatomical Consistency and Position Alignment.

Anatomical Consistency Score. The ACS quantifies the alignment between
the predicted bounding boxes and anatomical regions. Specifically, ACS mea-
sures the IoU between each predicted bounding box and its corresponding anatom-
ical region, taking the maximum IoU across all possible anatomical regions. The
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ACS is computed as follows:

ACS =
1

NTP

i=1∑
NTP

max
k

IoU(Bi,Mk) (6)

where NTP is the number of true positive predictions, Bi is the i-th predicted
bounding box and Mk represents the k-th anatomical region corresponding to the
i-th predicted box. IoU(Bi,Mk) denotes the IoU between the predicted bounding
box and the anatomical region. A higher ACS value indicates better anatomical
plausibility of the model’s predictions.

Position Match Score. The PMS measures the spatial consistency between
the text descriptions and image predictions. This metric evaluates how well the
predicted bounding boxes align with the anatomical regions described in the
clinical text. The PMS is computed as:

PMS =
1

NTP

NTP∑
i=1

IoU(Bi, Rtext,i) > 0.5 (7)

where Bi is the i-th predicted bounding box and Rtext,i is the reference region
defined by the text description for the i-th sample. IoU(Bi, Rtext,i) denotes the
IoU between the predicted bounding box and the region specified by the text. A
higher PMS value indicates better spatial alignment between the text and the
detected regions.

By using both ACS and PMS, we provide a comprehensive evaluation of
the anatomical consistency of the model and the spatial alignment between the
clinical text and image data. These metrics contribute to the interpretability
of our model, ensuring that it not only achieves high detection accuracy but
also provides trustworthy and interpretable predictions that can aid clinicians
in their decision-making process.

3 Experiments

3.1 Data Preparation and Preprocessing

In our experiments, we used a dataset of jawbone image-text pairs from Peking
University School and Hospital of Stomatology, including CBCT slices (JPG for-
mat) and corresponding clinical texts. Each pair was linked to a unique patient.
We excluded pairs with misleading information or poor quality (e.g., noise, ar-
tifacts). After quality control, the final dataset had 120 image-text pairs, each
with a 512×512 pixel resolution, split into 70% for training 15% for valida-
tion, and 15% for testing. CBCT slices were standardized to 512×512 pixels,
and bounding-box labels were created using LabelMe. For lesion detection, the
ground truth (GT) includes the predicted bounding box (BBox), sector-shaped



PolarDETR for Jawbone Lesion Detection in CBCT 7

area (PMS), and average jaw distribution (ACS) based on the FDI tooth posi-
tion method. For NER, GT includes tooth number, quadrant, and distance to
anatomical reference points. To augment the clinical text data, we used a lan-
guage model-based strategy to increase the number of image-text pairs, refined
through expert collaboration.

3.2 Implementation Details

All experiments were conducted using the PyTorch 2.4 framework and executed
on four Nvidia RTX 4090 GPUs. Our model was trained from scratch for a total
of 200 epochs. A batch size of 4 was used on each GPU, with an initial learning
rate set to 2e-4. We applied cosine decay, with the final learning rate reaching
2e-6 by the end of training.

3.3 Comparisons

We compared our model’s performance with state-of-the-art image-only models,
such as YOLOv8 [18], DETR [2], and Retina U-Net [9], as well as Image-Text
models like CLIP [15] and CORA [21]. For a fair comparison, we used the default
parameters from the open-source codes of competing methods, ensuring consis-
tent data volume and training cycles. We evaluated accuracy and interpretability
using mAP [16] (↑), ACS (↑), and PMS (↑).

The results in Table 1 show the detection and interpretability performance
of single-modal vs. multi-modal models. Among single-modal models, DETR
achieved the highest mAP of 89.35%, followed by YOLOv8 (87.26%) and Retina
U-Net (85.11%). Multi-modal models outperformed single-modal ones, with CORA
achieving a mAP of 91.52% and PolarDETR leading with the highest mAP of
93.66%. In terms of interpretability, PolarDETR outperformed others with an
ACS of 84.12% and PMS of 80.45%, surpassing both single-modal and multi-
modal models. Detection results for PolarDETR, shown in Fig. 3, highlight supe-
rior lesion localization and anatomical consistency, demonstrating the practical
effectiveness and robustness of our approach in clinical applications.

Table 1. Performance comparison of different models in detection and interpretability.

Model Model Type mAP(%) ACS(%) PMS(%)

YOLOv8
Single-modal (Image-only)

87.26 72.30 N/A
DETR 89.35 75.48 N/A
Retina U-Net 85.11 70.87 N/A

CLIP
Multi-modal (Image-text)

84.37 78.56 73.21
CORA 91.52 81.43 74.58
PolarDETR 93.66 84.12 80.45
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Fig. 3. Qualitative comparison of jawbone lesion detection results across different mod-
els. From left to right: original CBCT slices, GT, Retina U-Net, DETR, YOLOv8,
CORA, and the proposed PolarDETR.

3.4 Ablation Study

We conducted ablation experiments to evaluate the effectiveness of the PTPE
module and the AC-PML by training our model with and without these com-
ponents. The first experiment compared the model with and without the PTPE
module. The second experiment assessed the impact of AC-PML by comparing
the full model with a version using only the standard DETR loss. Table 2 shows
the results of these studies. Both the PTPE and AC-PML significantly improve
detection accuracy, anatomical consistency, and position alignment.

Table 2. Ablation study results.

PTPE AC-PML mAP(%) ACS(%) PMS(%)

✗ ✓ 88.27 78.32 73.20
✓ ✗ 89.65 80.45 75.38
✓ ✓ 93.66 84.12 80.45

4 Conclusion

We proposed PolarDETR, a multi-modal approach that combines clinical text
and CBCT images for jawbone lesion detection. With PTPE and AC-PML, our
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model enhances detection accuracy, anatomical consistency, and interpretability.
Results show that PolarDETR outperforms existing models, offering greater in-
terpretability for AI-assisted diagnosis. Future works will expand the dataset for
better generalizability, explore integration with other imaging modalities, and
focus on improving computational efficiency for clinical application.
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