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Abstract. Medical Visual Question Answering (Med-VQA) aims to as-
sist in clinical diagnosis, but still faces challenges with language bias.
Current approaches oversimplify the causal relationship between clinical
terms and answers by treating it as a binary positive/negative effect.
This can lead to the persistence of bias or reduced sensitivity to ques-
tions. To address this limitation, we propose a novel approach named
DeCoCT (Debiasing Med-VQA via Counterfactual Contrastive Train-
ing). We decompose the causal relationship between clinical terms and
answers into two components: (1) concept localization in medical images,
and (2) prior knowledge from training data. We introduce a Key Region
Capture Module (KRCM), trained with counterfactual strategies. It can
enhance the model’s ability to capture critical information through clin-
ical terms. Furthermore, we employ counterfactual contrastive training
to eliminate spurious correlations introduced by clinical terms while en-
hancing the model’s focus on relevant visual regions. In addition, we
construct a new conditional prior dataset based on VQA-RAD, named
VQA-RAD-CP. Extensive experiments demonstrate that our approach
significantly mitigates language bias in Med-VQA. Our codes and VQA-
RAD-CP dataset are available at https://github.com/YX542/DeCoCT.

Keywords: Medical Vision Question Answering · Language Bias · Coun-
terfactual Training · Contrastive Training

1 Introduction

Medical Visual Question Answering (Med-VQA) plays a crucial role in assisting
with the diagnosis of medical imaging. Given a medical image and a clinical
question associated with the image, it can provide a user-friendly answer. With
increasing amounts of data in clinical practice, radiologists face substantial chal-
lenges in managing their workload [1]. Med-VQA can improve diagnostic effi-
ciency, thus reducing both the misdiagnosis rate and labor costs [17]. Existing
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Med-VQA still faces the challenges of language bias, which means that a model
generates answers based on superficial connections between questions and an-
swers, neglecting visual information. This problem is mainly caused by the un-
balanced data distribution of the dataset and the subjective influence of human
on the data processing process [27,12,13,19]. In clinical practice, language bias
can weaken the generalization capabilities of models, potentially leading to mis-
diagnoses. Furthermore, it can also reduce the reliability of Med-VQA systems
and hinder their further development [26].

However, current Med-VQA approaches [11,9,7,6,14] mainly focus on build-
ing robust models by introducing external knowledge, pre-training, etc. These
works overlooked the salient issue of language bias. Consequently, this over-
sight leaves the issue unresolved, reducing the effectiveness of these systems. In
general VQA, [2,23,5,16,10,25] and others have made progress in debiasing work.
However, these methods do not consider the particularity of medical images. For-
tunately, recent efforts have begun to address this gap. [27] solves the problem of
language bias by training with counterfactual data and eliminating the causal ef-
fect of prior language knowledge. Likewise, [3] generates counterfactual samples
using LRP, applying counterfactual causal reasoning to enhance interpretabil-
ity. Despite these advances, these methods ignore a key factor in language bias,
the connection between clinical terms and answers. For example, when asked "Is
there a pleural effusion?", the clinical terms (pleural effusion) may directly affect
the final answer distribution. "No" is the most common answer, and the model
favors "no" due to this connection, even when presented with an image that sug-
gests otherwise. The spurious correlations between clinical terms and answers is
an aspect that needs to be eliminated. However, removing it directly could lead
to a reduction in the question-sensitive ability of the model [5]. Given this com-
plexity, treating the causal relationship between clinical terms and answers as
a simple binary positive/negative effect is unreasonable. We propose that the
main causal relationship between clinical terms and answers can be divided into
concept localization in medical images and prior knowledge from training data.

In this paper, we introduce Debiasing Med-VQA via Counterfactual Con-
trastive Training (DeCoCT), a novel method designed to reduce language bias
in Med-VQA models. This approach explores the relationship between clinical
terms and regions of the medical image. This allows us to obtain a visual positive
effect to complement the reduced ability to capture key information. Specifically,
our approach consists of three parts: (i) We modify the question by masking the
clinical terms and assign the corresponding images and answers. This allows us
to generate counterfactual data that only modify the question. (ii) We introduce
a Key Region Capture Module (KRCM), trained with counterfactual data. This
enables the model to focus on regions related to clinical terms through counter-
factual training. (iii) We employ counterfactual contrastive training to eliminate
spurious correlations introduced by clinical terms, while enhancing the model’s
focus on relevant visual areas. In addition, to further assess bias in the Med-VQA
model, we created a bias-sensitive version of VQA-RAD [13], called VQA-RAD-
CP. We also assessed the performance of the latest methods on this dataset.
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Fig. 1. Overview of the DeCoCT method’s two-stage training process for debiasing
Med-VQA, consisting of (a) Counterfactual Training and (b) Contrastive Training.
KRCM∗ indicates no use of a projection layer.

Extensive experiments show that DeCoCT can achieve a balance between avoid-
ing the direct connection of clinical terms with answers and maintaining the
model’s question-sensitive ability. In particular, its state-of-the-art performance
on SLAKE-CP [27] and VQA-RAD-CP demonstrates that our method has made
significant advancements in bias mitigation.

2 Method

2.1 Counterfactual Data Preparation

To avoid ambiguity, we preprocess the data from datasets. First, we use Scis-
paCy [21] to recognize clinical terms in the questions. Then we normalize the
terminology and unify the case. Finally, we submit the screened clinical terms
to radiology experts for manual review. The expert review process is as follows:
Two experts with sufficient work experience independently review ScispaCy’s
extraction results, and any disagreements (2.17%) are resolved by the third ex-
pert with extensive experience. Through the above operations, we construct a
domain-specific lexicon. Based on this lexicon, we extract clinical terms from
the questions and calculate the co-occurrence frequency of clinical terms and
answers. Next, we compute the PMI (Pointwise Mutual Information) of these
data as:

PMI(w, a) = log
P (w, a)

P (w)P (a)
(1)

where w represents a clinical term and a represents an answer. P (w, a) is the joint
probability of w and a occurring together. To avoid interference from common
terms like (CT, patient and so on), we remove parts with PMI close to 0. As
a result, we obtain pairs of clinical terms and answers with high relevance and
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separate the clinical items W from them. In addition, we determine the most
impactful clinical terms w∗ through a occlusion testing as:

wa = argmax
i

(P (y | x)− P (y | xi)) (2)

Where P (y | x) represents the probability of the answer y given the original
input x. xi denotes the input x with the i-th clinical term masked. We construct
counterfactual samples Q− by replacing clinical terms W with [MASK]. Then
we assign the corresponding answer A and image V to Q− and W , forming the
counterfactual data (Q−,W, I, A).

2.2 Counterfactual Data Training

To enhance the model’s ability to capture key information, we train the model
using counterfactual data (Q−,W, I, A). We introduce a key region capture mod-
ule (KRCM), which consists mainly of a CLIP model and a visual encoder. The
CLIP model is used to calculate the relevance between W and each patch of V ,
using cosine similarity.

sim(W,V) =

[
W · v1

∥W∥∥v1∥
, . . . ,

W · vN

∥W∥∥vN∥

]
(3)

where vj denotes the j-th patch in V, and N is the total number of patches.
Then, the visual encoder merges and encodes patches with the highest relevance
to obtain the feature of V ∗.

V∗ = {vi | i ∈ TopK (sim(W,V), k)} (4)

Next, a projection layer maps the features of V ∗ and V to the feature size of V,
obtaining V +. The feature fusion module fuses V + and Q− to obtain an answer
distribution A∗. In the initial stages of training, we focus on the Key Region
Capture Module KRCM by freezing the other weights and performing partial
training on this module. We define Pv+,q− = Softmax(Zv+,q−) as the answer
distribution, where Zv+,q− is obtained by the model when entering V + and Q−.
We use binary cross-entropy loss LBCE as training objective :

LBCE = − 1

N

N∑
i=1

[ti log ŷ + (1− ti) log(1− ŷ)] (5)

where ŷi denotes the Pv+,q− of the i-th sample. Through counterfactual training,
we enable the model to utilize the visual information provided by KRCM to
answer questions in the absence of clinical terms.

2.3 Counterfactual Contrastive Training

To conduct comparative training, we designed a positive and negative sample
selection strategy. We define Pv,q = Softmax(Zv,q), where Zv,q is obtained by
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the model when entering V and Q. We consider the output Pv,q of the baseline
network as the anchor output. Next, we further define Pw = Softmax(Zw) and
Pv∗ = Softmax(Zv∗), where Zw and Zv∗ are the outputs of the model when only
entering W and V ∗, respectively. Similarly to [2,23,27], we consider the effect
of w on A (pure language effect) as language bias. Therefore, our objective is
to increase the distance between Pw and Pv,q to reduce the impact of language
bias. Meanwhile, we regard the effect of v∗ on A as the aid of regions of visual
attention to answer questions. Thus, our objective is to decrease the distance
between Pv∗ and Pv,q to enhance the contribution of visual information. The
model is updated through the loss function L:

L = DKL(Pv,q ∥ Pv∗) + λ ·max(0, γ −DKL(Pv,q ∥ Pw)) (6)

where DKL denotes the KL divergence between the anchor distribution Pv,q and
the positive sample distribution Pv∗ . λ is the weight coefficient that balances the
positive and negative sample terms. max(0, γ − DKL(Pv,q ∥ Pw)) ensures that
the KL divergence between the anchor distributionPv,q and the negative sample
distribution Pw is at least γ.

As shown in the Fig. 1, to avoid instability during the training process, we
employed three branches for training. The weights related to the baseline network
were used to initialize these branches. Through cross-model contrastive training,
we can utilize V + and W to eliminate language bias brought by clinical terms.

3 Experiment

3.1 Construction of VQA-RAD-CP

Based on the design paradigm of VQA-CP [13] and SLAKE-CP [27], we construct
a bias-sensitive Med-VQA dataset, called VQA-RAD-CP. First, we integrate
the train set and test set of VQA-RAD into a set. Then we group the samples
according to question type (determined by the prefix word of question) and
answer label. If a sample group has a corresponding group with different question
types or different answers in the test set, the group is completely divided into the
test set. We break the consistency of the prior distribution between the train set
and the test set by establishing a transfer pattern of the joint question-answer
distribution. The partition was completed when the size of the test set reached
451 cases (aligned with the size of test set in VQA-RAD).

3.2 Datasets and Implementation Details

Datasets We validated our model on VQA-RAD [13] and SLAKE [19]. VQA-
RAD contains 315 radiological images with 3,515 question-answer pairs, includ-
ing 451 pairs reserved for testing. SLAKE comprises 14,028 samples, divided into
70% training subset, 15% validation subset, and 15% test subset. Additionally,
we evaluated our model’s bias mitigation performance on VQA-RAD-CP and
SLAKE-CP [27] datasets to verify its debiasing effectiveness.
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Table 1. Comparison results on VQA-RAD and SLAKE datasets, with partial data
experimented using five different random seeds for the analysis.

Methods VQA-RAD SLAKE

Open Closed Overall Open Closed Overall

MEVF+SAN[22] 49.20 73.90 64.10 75.30 78.40 76.50
MEVF+BAN[22] 49.20 77.20 66.10 77.80 79.80 78.60
CPRD+BAN[18] 52.50 77.90 67.80 79.50 83.40 81.10
M2I2[15] 61.80 81.60 73.70 74.70 91.10 81.20
M3AE[6] 67.23 83.46 77.01 80.31 87.82 83.25
MISS[4] 71.81 80.35 76.05 81.47 82.91 82.00
CCIS-MVQA[3] 68.78 79.24 75.06 80.12 86.72 84.08
LPF[16] 41.7±1.3 72.1±1.1 60.9±1.3 74.8±1.4 77.0±1.1 74.9±1.3

RUBI[2] 42.4±1.2 73.2±1.0 61.5±1.2 75.1±1.2 77.6±1.3 75.8±1.3

GGE[10] 44.6±1.4 74.5±1.1 63.8±1.1 76.4±1.1 78.7±1.2 76.6±1.2

CLIPQCR[8] 58.0±1.4 79.6±1.1 71.1±1.2 78.2±1.3 82.6±1.5 80.1±1.3

DeBCF[27] 58.6±1.1 80.9±0.8 71.6±1.0 80.8±0.9 84.9±0.7 82.6±0.9

DeCoCT(Ours) 67.1±0.5 85.7±0.4 78.3±0.5 82.5±0.3 87.0±0.6 84.9±0.5

Implementation Details We adopt M3AE [6] as the baseline framework. Fol-
lowing the original implementation, the vision encoder utilizes CLIP-ViT-B [24]
while the language encoder employs RoBERTa-base [20]. The multi-modal fu-
sion module consists of a 6-layer Transformer. In KRCM, the clip model employs
biomedclip [28], which has undergone sufficient pre-training. In our experiments,
separate models with distinct weights were trained and tested on each dataset.
The model is trained for 150 epochs with a batch size of 64 using AdamW op-
timization. Learning rates use 1e-5, whereas the fusion module adopts 5e-5. In
Equation 6, the parameters λ and γ are set to 1 and 0.5 respectively. We chose
20% as the proportion of visual attention regions. We used five different random
seeds for the experiments. The experiments were conducted on a server with 2
NVIDIA A6000 48GB GPUs.

3.3 Comparison with the State-of-the-arts

We compare DeCoCT with existing VQA models on the VQA-RAD and SLAKE
benchmarks, as summarized in Table 1. Our model achieves significant advan-
tages over state-of-the-art approaches, with average accuracies of 78.3% and
84.8% on the two datasets, respectively. Compared to the baseline M3AE, De-
CoCT improves accuracy by 1.3% on VQA-RAD and 1.5% on SLAKE. Notably,
DeCoCT outperforms existing debias methods (e.g., RUBi and DeBCF) by a
clear margin. Further analysis on the conditional prior datasets (VQA-RAD-CP
and SLAKE-CP) is presented in Table 2. DeCoCT achieves the best debias-
ing performance, attaining average accuracies of 61.9% and 49.2%, respectively.
This represents 4.5% and 3.8% improvements over M3AE on VQA-RAD-CP and
SLAKE-CP. The superiority of DeCoCT in bias reduction is particularly evident
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Table 2. The additional comparison of experimental results on the VQA-RAD-CP and
SLAKE-CP dataset. (∗) indicates that no pre-trained weights are used.

Methods VQA-RAD-CP SLAKE-CP

Open Closed Overall Open Closed Overall

LPF[16] 36.5±1.2 44.6±1.1 33.8±1.3 13.1±1.4 29.7±1.4 29.2±1.3

RUBI[2] 36.9±1.1 45.0±1.2 34.2±1.3 12.2±1.3 26.9±1.2 26.4±1.3

GGE[10] 38.3±1.2 45.2±1.1 35.4±1.3 13.9±1.1 30.9±1.3 30.2±1.3

MEVF+SAN[22] 38.5±1.2 40.8±1.4 35.6±1.4 12.6±1.1 29.6±1.0 28.7±1.0

MEVF+BAN[22] 39.7±1.1 43.9±1.2 36.7±1.3 13.0±1.4 29.8±1.2 29.1±1.3

CLIPQCR[8] 42.7±1.2 41.4±1.1 39.5±1.3 13.4±1.2 30.5±1.1 30.0±1.2

CPRD+BAN[18] 40.7±1.0 42.6±1.2 37.7±1.1 13.9±1.3 31.2±1.5 30.4±1.5

DeBCF[27] - - - 18.6±1.1 35.4±1.0 34.2±1.2

MISS(∗)[4] 31.8±1.2 21.6±0.9 25.9±1.1 17.3±1.1 49.2±1.0 33.8±1.1

M2I2(∗)[15] 35.4±1.1 23.0±1.0 29.5±0.9 17.3±1.1 51.9±0.9 35.2±1.0

M3AE[6] 59.9±0.9 55.6±1.1 57.4±1.0 24.4±1.0 65.1±0.9 45.4±1.0

DeCoCT(Ours) 63.0±0.5 61.0±0.3 61.9±0.4 27.3±0.5 69.6±0.5 49.2±0.6

when compared to existing debiasing frameworks, highlighting its effectiveness
in addressing spurious correlations in Med-VQA.

Table 3. Ablation results for the DeCoCT method: w/o V + indicates the performance
when adjustments to the visual attention regions are not made; w/o W indicates the
performance when the influence of clinical terms is not removed.

Methods VQA-RAD-CP SLAKE-CP

Open Closed Overall Open Closed Overall

Baseline 59.9±0.9 55.6±1.1 57.4±1.0 24.4±1.0 65.1±0.9 45.4±1.0

w/o V + 60.4±0.7 56.8±0.9 58.3±0.8 25.4±0.9 65.6±1.0 46.2±1.0

w/o W 61.5±1.0 58.3±0.9 59.7±0.9 25.2±1.0 66.9±1.0 46.8±1.1

DeCoCT 63.0±0.5 61.0±0.3 61.9±0.4 27.3±0.5 69.6±0.5 49.2±0.6

3.4 Ablation Analysis

Table 3 presents ablation studies validating the effectiveness of our designed
approach. Both (w/o V +) and (w/o W ) showed improvements over the baseline,
indicating that reducing direct associations with clinical objects and introducing
visual attention regions both help mitigate language bias in Med-VQA. Notably,
(w/o W ) demonstrated superior performance compared to (w/o V +). The results
of DeCoCT reveal that combining both strategies can more effectively reduce
bias.
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Table 4. Comparison of DeCoCT per-
formance with different selections of
keyword quantities.

Methods VQA-RAD

Open Closed Overall

Top1 65.9±0.6 84.9±0.5 77.4±0.5

All 67.1±0.5 85.7±0.4 78.3±0.5

Table 5. Comparison of Removing
Language Priors from Entire Questions
Versus Isolating Removal to Clinical
Terms.

Methods VQA-RAD SLAKE

Question 77.0±0.3 83.7±0.4

Clinic terms 78.3±0.5 84.9±0.5

Fig. 2. Qualitative analysis of six VQA-RAD cases: Group A cases have strong prior
associations between clinical items and answers, whereas Group B cases do not.

As shown in Table 4, selecting all clinical terms performs better than selecting
only one of the most influential clinical terms. Normally, 1-3 clinical words are
valid for a question. As shown in Table 5, we try to remove the language priors of
the entire question from the baseline model. The results show that the effect of
removing the whole language prior may be ineffective in the context of medical
VQA datasets.

3.5 Qualitative Analysis

To further illustrate the effectiveness of our DeCoCT model in debiasing, we
performed a qualitative analysis on six Med-VQA cases from VQA-RAD, as
shown in Fig 2. The results for Group A indicate that, in scenarios with strong
priors, both DeCoCT and the baseline can provide the correct answers. How-
ever, the results for Group B show that DeCoCT achieves superior performance
in the absence of sufficient priors, while the baseline struggles to handle such
scenarios effectively. These six cases collectively demonstrate that our method
can effectively eliminate language bias in Med-VQA.
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4 Conclusion

In this paper, we propose a new method (DeCoCT) to eliminate language bias
in Med-VQA. We argue that the causal relationships between clinical terms
and answers should be decomposed. To help the model focus more on image re-
gions related to these clinical terms, we introduce the Key Region Capture Mod-
ule (KRCM), which is trained with counterfactual strategies. Building on these
strategies, DeCoCT achieves debiasing effects through counterfactual contrastive
training. Experiments show that our method has made significant progress. Our
current focus is on basic experiments on the VQA-RAD and Slake. In the future,
we will conduct a more fine-grained analysis between questions and answers.
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