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Abstract. Dynamic positron emission tomography (PET) with tracer
[18F]FDG enables non-invasive quantification of glucose metabolism by
means of kinetic analysis, often modelled by the two-tissue compartment
model (TCKM). However, voxel-wise kinetic parameter estimation using
conventional methods is computationally intensive and limited by spatial
resolution. Deep neural networks (DNNs) offer an alternative but require
large training datasets and significant computational resources. To ad-
dress these limitations, we propose a physiological neural representation
based on implicit neural representations (INRs) for personalized kinetic
parameter estimation. INRs, which learn continuous functions, allow for
efficient, high-resolution parametric imaging with reduced data require-
ments. Our method also integrates anatomical priors from a 3D CT foun-
dation model to enhance robustness and precision in kinetic modelling.
We evaluate our approach on an [18F]FDG dynamic PET/CT dataset
and compare it to state-of-the-art DNNs. Results demonstrate superior
spatial resolution, lower mean-squared error, and improved anatomical
consistency, particularly in tumour and highly vascularized regions. Our
findings highlight the potential of INRs for personalized, data-efficient
tracer kinetic modelling, enabling applications in tumour characteriza-
tion, segmentation, and prognostic assessment. The code is available at:
https://github.com/tkartikay/PhysNRPET

Keywords: Implicit Neural Representations · Tracer Kinetic Modelling
· Dynamic PET.

1 Introduction

Dynamic positron emission tomography (PET) with [18F]FDG has allowed for
non-invasive assessment of glucose metabolism in tissues through kinetic analy-
sis, in particular with the irreversible two-compartment-kinetic model (TCKM).
The kinetic parameters thus obtained, K1, k2, and k3 represent the rates of
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transport of the tracer between blood and cells (influx and efflux) and the rate
of phosphorylation of glucose, respectively. VB describes the blood volume frac-
tion, to correct for the partial volume effects arising from the limitations of the
scanner spatial resolutions [6]. Since glucose metabolism differs for metastatic
lesions from non-metastatic tissues with increased uptake, kinetic parameters
have been advantageous in successful diagnosis, complementing Standard Up-
take Values (SUV) values from static PET images [22]. Phosphorylation rate
(k3) is significant metric for tumour differentiation in colorectal cancers [19] and
breast cancers [8], and the perfusion parameter (K1) can be a marker of an-
giogenesis in breast cancers [3]. Kinetic parameters, carrying more information
than SUV, can play a vital role as additional biomarkers for tumour heterogene-
ity analysis, precise segmentations, and prognostic predictions.

Conventional methods based on non-linear curve fitting (CF) used to per-
form kinetic analysis on volumes of interest lack the spatial neighbourhood un-
derstanding and are slow when applied to derive voxel-based parametric im-
ages. These challenges can be overcome through the use of deep neural networks
(DNNs) to derive the parametric images [4,7,9]. Self-supervised DNNs have re-
cently been proposed to generate the K1, k2, k3, VB parametric images which
satisfy the TCKM [5]. These methods, in turn, require large amount of training
data to achieve accurate results, and while they are quick to predict the outputs
once trained, the training of these networks itself is a slow and memory-intensive
process, balanced by reducing the resolution of the training dataset, and slicing
it into 2D+t data instead of processing the entire 3D+t data at once.

Implicit neural representations (INRs) are neural networks that learn contin-
uous functions, which can parametrise signals, such as mapping continuously the
image intensities from the input spatial coordinates. With steady adoptions in
the medical imaging field due to their memory efficiency, improved reconstruc-
tions, interpolation capabilities, and personalisation [10], INRs could overcome
the data limitation issues faced by DNNs and speed issues of CF in generation of
parametric images in dynamic PET modelling. Since INRs can be optimised on
single patient acquisitions, they can be adapted to individual patient anatomy
and physiology [17], leading to personalised neural networks.

Encoding the dynamic physiological processes in the INR also allows their
integration with downstream models that are trained for classification of malig-
nancies, or early detection of metastases, etc., as well as with foundation models
that extract features from the associated anatomical data such as CT scans,
enabling feature-rich end-to-end pipelines for aiding the clinical routines.

Thus, guided by their promise, we propose the use of INRs for modelling
dynamic PET to generate kinetic parameters (Fig. 1). Our contribution is:

– the introduction of a physiological neural representation for tracer kinetic
modelling for a [18F]FDG dynamic PET/CT dataset,

– its extension by integrating anatomical information and features extracted
from corresponding CT scan using a 3D CT foundation model, and

– a comparative analysis against state-of-the-art DNNs and CF in terms of
goodness of fit, memory and speed.
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Fig. 1. Schematic overview of the proposed pipeline (illustrated in 2D for clarity; works
in 3D spatial coordinates). Spatial positions are encoded using either positional coor-
dinates alone, with local CT Hounsfield units, or with neighbourhood features from a
CT foundation model. These features are mapped via a SIREN-based INR to estimate
voxelwise kinetic parameters of the irreversible two-tissue compartment model. Pre-
dicted parameters generate modelled time-activity curves (TAC), which are optimised
by minimising the MSE with measured PET curves.

1.1 Related Works

Voxel-wise estimation of kinetic parameters have been explored by solving the
non-linear optimisation problem of fitting the model-predicted curves onto the
measured data [1,21]. The data in these studies was limited to smallest frames
of 10s resolution. With the advancements in long axial field of view scanners,
and the availability of improved temporal resolution, the kinetic parameters have
also been estimated for increased resolution of 2s frames [14]. Sari et al. provide
reference values for kinetic parameters for volumes of interest in oncological
patients, and have also shown the voxel-wise generation of TCKM. Building
upon this work, de Benetti el al. proposed DNNs for the generation of parametric
images from the dynamic PET data, relying on self-supervised training of the
DNN through the integration of the kinetic model into the loss function [5].
To parametrise tracer kinetics through encoding the PET reconstruction and
one compartment model in neural networks, a hybrid physics- and data-driven
approaches is proposed to incorporate the mathematical expressions defining the
kinetics [23]. Shao et al. propose employing DNNs to discretise the data, and
solving the ODEs that define the kinetic model, where the tracer concentration
in each compartment is represented with separate fully connected DNNs, and
the kinetic parameters are optimised while minimising the ODE loss [15].

Since INRs are based on the assumption of continuity as an a priori [10], these
representations can be made robust to noise and further constrained anatom-
ically through image-derived priors, such as extracted from large-scale "foun-
dation" models. Large-scale models trained on high-resolution oncological data
can provide knowledge of vascular architecture, tissue heterogeneity, and image-
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based biomarkers as embeddings or input features to the task-specific models.
Neural networks that encode the tracer kinetics could similarly benefit from the
anatomical understanding of macroscopic blood supply routes, sharp gradients
marking organ bounds, regions of tissue similarities and anomalies, etc. A foun-
dation model trained on high-resolution 3D CT oncological datasets with un-
derstanding of underlying biology, and shown to improve performance of down-
stream tasks, particularly with limited dataset, and resilient to input variation
has been presented by Pai et al [11].

2 Materials and Methods

2.1 Dataset

The dataset consists of 24 patients with various tumour types undergoing dy-
namic PET imaging (average injected activity: 235 ± 51 MBq of [18F]FDG),
immediately followed by a CT scan using a Siemens Biograph Vision Quadra
long-field-of-view PET/CT device. The PET acquisition lasted 65 minutes for
all patients and consisted of 62 frames with varying durations: 2 seconds for the
initial frames, 30 seconds after the first 2 minutes, and up to 5 minutes per frame
toward the end of the acquisition. PET images were reconstructed with a voxel
size of 1.65 × 1.65 × 1.65 mm³ and subsequently filtered using a 2 mm full-
width at half maximum (FWHM) Gaussian filter to generate high-resolution
images (HiRes). To match the resolution used by De Benetti et al., we down-
sampled the PET images to 2.5 × 2.5 × 2.5 mm³, producing low-resolution
images (LoRes). The CT scans were acquired in low-dose mode (voltage: 120
kV, tube current: 25 mA) and reconstructed with a voxel size matching that of
the high-resolution PET images.

2.2 Preprocessing and Architecture

Dynamic PET data were first normalised to the range [0, 1] by dividing by
the maximum of the image-derived input function, which was on the order
of ∼ 200 kBq/ml. The corresponding CT data were similarly mapped from
[−1024, 2048] to the interval [0, 1]. Registration of PET and CT was assumed
valid and no motion correction between frames was applied.

Using the normalised CT volume, the CT foundation model [11] extracted
4096 features for each voxel, by taking as input 50 × 50 × 50 neighbourhood
centred on that voxel. These features served as an optional input to the network,
depending on the variant of the INR under consideration.

Spatial coordinates x ∈ R3 were first normalised to the interval [−1, 1]. Each
normalised coordinate was encoded using Gaussian Fourier Features (GFF) [20]
[12] drawn from a zero-mean Gaussian distribution, with a standard deviation
chosen to control frequency bandwidth. A total of 256 frequencies were sam-
pled, and a multiplier of 10 was applied to spread the frequency spectrum.
Specifically, for each coordinate x, the encoding was formed by computing:



Physiological neural representation for dynamic PET 5

γ(x) = [sin(2πBx), cos(2πBx)]T where B is a randomly generated matrix
of size 256 × 3. The choice of 256 frequencies and a multiplier of 10 followed
typical recommendations in the literature and was not varied [20]. In all cases,
the spatial domain (2D or 3D) was sampled, and the resulting coordinates were
normalised to the interval [−1, 1] prior to being processed with GFF. Where
relevant (CTHU variant, see below), the voxel-wise H.U. value, also normalised
to [0, 1], was appended to the normalised coordinates to form an extended in-
put vector. This augmented input was then encoded with GFF. However, in the
variant utilising the foundation model features (CTFM variant, see below), the
4096-dimensional feature vector was incorporated directly, without GFF encod-
ing, while GFF was still applied to the spatial coordinates.

The encoded features were passed to a SIREN [18] network with three hidden
layers. Each hidden layer comprised 512 units and used sine activations, following
the standard weight-initialisation scheme described in the SIREN work to pre-
serve gradient stability. The final layer was a linear layer producing four outputs,
the predicted kinetic parameters: K1, k2, k3, and Vb. These outputs correspond
to the parameters in the TCKM governed by a system of ordinary differential
equations (ODEs). Maintaining differentiability from inputs to outputs facili-
tated direct gradient-based training in conjunction with the ODE formulation.

Parameter estimation was performed by minimising the mean-squared er-
ror (MSE) between the Time Activity Curve (TAC) generated from the pre-
dicted parameters and real TAC values measured at the input coordinate in
the dynamic PET. Training used the Adam optimiser with a learning rate of
1e−5. The network was trained for 100 epochs and all hyperparameters, in-
cluding the number of frequencies, the sine activation design, and the network
depth, were adapted from SIREN and GFF examples without additional ablation
experiments[2,13,16].

Using the estimated kinetic parameters from the INR for each voxel coordi-
nate, the predicted TAC was generated by solving the TCKM ODEs (Eq. 2.2).

TACINR(t) = (1− Vb)

[
K1

k2 + k3

[
k3 + k2e

−(k2+k3)t
]
∗A(t)

]
+ VbA(t) (1)

To train the INR, the predicted TAC was then compared using MSE against
the observed TAC at the discrete time points where measurements were available.
The mean and standard deviation of these reconstruction errors were computed
across the full 3D spatial domain with time (3D+t), selected 2D slices with time
(2D+t), and at each individual voxel with time (voxel+t). The blood-to-tissue
transport constant Ki was calculated using Ki = K1k3/(k2 + k3).

3 Results

We evaluated the proposed architecture in several variants: HiRes and LoRes,
2D (single slice) and 3D (a stack of 10 adjacent slices) - resulting in the variants
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inr-HiRes-2D, inr-LoRes-2D, inr-HiRes-3D and inr-LoRes-3D. Due to incomplete
data of one patient, we compared inr-HiRes-2D to conventional CF in 23 patients
(Tab. 1). In those 23 patients, we manually segmented liver, spleen, both lungs,
and both kidneys for analysis of kinetic parameters (Fig. 2). Additionally, we
tested configurations incorporating the Hounsfield unit (HU) values from the CT
scan (only for HiRes and in 2D - variant CTHU-2D) and those using features
extracted with the foundation model (variant CTFM-2D), comparing them to
the neural network proposed by De Benetti et al. in both 2D (single-slice) and
3D (stack of 10 adjacent slices) configurations (Tab. 2) [5].

As comparison metrics we used MSE with its standard deviation (SD), and
training time, inference time, and memory utilization. All experiments were con-
ducted on a MacBook with an M3 Pro (12-core CPU, Metal 3, 36GB RAM).

Table 1. Quantitative evaluation of INR against CF: differences are statistically sig-
nificant (p ≪ 0.05)

Method Mean MSE (± SD) SD MSE Runtime (± SD)
INR 5.48E-03 ± 2.43E-03 1.13E-02 1336.13 ± 38.54 s
CF 1.16E-02 ± 8.23E-03 2.27E-02 40933.44 ± 1651.57 s

Table 2. Quantitative evaluation of INR variants and comparison with the spatio-
temporal neural network of De Benetti et al. (FDB112-2D and FDB112-3D).

Model Voxel MSE(±SD) Training Inference Memory
Resolution Time Time Utilisation

FDB112-3D 2.5 mm 0.066 ± 0.255 - 62 s -
INR-LoRes-3D 2.5 mm 0.009 ± 0.093 24.3 min 66 s 6.7 GB
FDB112-2D 2.5 mm 0.073 ± 0.268 - 0.15 s -
INR-LoRes-2D 2.5 mm 0.009 ± 0.093 24.1 min 6 s 4.3 GB
INR-2D-HiRes 1.65 mm 0.009 ± 0.094 25.2 min 8 s 11.9 GB
CTHU-INR-2D-HiRes 1.65 mm 0.009 ± 0.094 25.4 min 8 s 12.4 GB
CTFM-INR-2D-HiRes 1.65 mm 0.009 ± 0.094 25.7 min 9 s 13 GB

To qualitatively visualize the impact of the different INR variants, we visu-
alize the mean MSE and its SD (Fig. 3) for an exemplary patient. This gives an
idea of which organs the measured and the calculated TACs depart in average
(mean MSE), and its spread (SD) is. Additionally, Fig. 4 shows for a particular
segment across the tumour when in time and space the MSE is highest.

4 Discussion

This study applies implicit neural representations (INRs) to tracer kinetic mod-
elling in dynamic [18F]FDG PET. Unlike non-linear CF or large-scale DNNs,
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Fig. 2. Box plots (average ± SD for calculated parameters and MSE for four organs
across 23 patients using INR and CF. Ranges obtained with PMOD as reported by
Sari et al. [14] are plotted alongside for reference.

Fig. 3. MSE (top row, red) and SD (lower row, blue) for a coronal slice of an exemplary
patient. MMSE is higher on average over the complete slice (see FDB112 LoRes MSE
Clipped vs. INR LoRes MSE), particularly in the tumour (black arrow) and kidneys
(green arrow), ignoring the blood pool (visible larger vessels). SD images show less
variation on the MSE over time for our model. LoRes and HiRes variants of our model
(right two columns) show good agreement with more details in the HiRes image.
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Fig. 4. MSE along a segment crossing a mediastinal lymph node metastasis (see PET
slice, left). Plots show MSE as a function of space (left to bottom axis) and time
(bottom to right axis). The left plot displays the 2D baseline; the centre plot shows the
inr-LoRes-2D variant; the right plot shows the curve fit results. The baseline exhibits
higher error in the lesion centre at late time points, whereas the INR yields lower MSE
similar to CF, with errors instead aligning with the IDIF peak (not shown).

INRs approximate the continuous spatio-temporal function of patient-specific
PET signals. Such a representation requires fewer training examples than conven-
tional DNNs, making it useful when data availability is limited. When compared
to CF, calculating dynamic parameters with INRs takes significantly shorter
time and produces smoother images as spatial information is integrated regular-
izing the noise at a single voxel level. In addition, modelling kinetics through an
INR allows more flexibility in handling anatomical and physiological variability
across patients.

We integrated anatomical information from CT by incorporating HU values
and, in a separate variant, 3D CT foundation model features. Both approaches
provided comparable MSE but showed slightly faster convergence (not shown),
suggesting that anatomical descriptors can guide the estimation of kinetic pa-
rameters. The proposed INRs consistently achieved lower MSE than a baseline
DNN and CF, likely due to their ability to capture spatio-temporal dynamics
via a continuous, data-efficient mapping.

Performance across INR variants was similar in accuracy, though convergence
speed and memory demands differed. Foundation-model-based INRs converged
faster but required more memory. Nonetheless, LoRes variants of our INR re-
duced the resource footprint, enabling training on standard hardware setups.

Comparisons with a baseline DNN and CF to a lesser extent proved that INRs
show lower errors, especially in tumour and kidney regions, which often exhibit
rapid or heterogeneous tracer kinetics. This highlights the robust parameter
estimation of INRs when organ- or lesion-specific kinetic variability must be
captured.

Accurate kinetic parameters (Ki, K1, k2, k3, Vb) can reveal metabolic prop-
erties that aid in tumour assessment and therapy evaluation. The continuous
form of INRs and their integration with anatomical descriptors can potentially
reduce segmentation errors and support downstream tasks such as lesion clas-
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Fig. 5. Coronal slices of parametric images from the 2D baseline (upper row, second to
last columns) and the inr-LoRes-2D variant. INR-derived maps exhibit greater detail
and sharper edges. Boundaries of the kidneys (green arrow, prominent in K1 and k2)
and tumour (yellow arrow, seen in k3) are more clearly defined, highlighting tissue
heterogeneity. The higher contrast in the tumour indicates greater specificity.

sification. Further research could expand the scope by incorporating additional
imaging modalities, testing on larger datasets, or refining network architectures
and Fourier feature encodings. This future work may improve accuracy, promote
generalisability, and further lower the hardware demands for advanced tracer
kinetic modelling.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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