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Abstract. In the domain of 3D biomedical image segmentation, Mamba
exhibits the superior performance for it addresses the limitations in mod-
eling long-range dependencies inherent to CNNs and mitigates the abun-
dant computational overhead associated with Transformer-based frame-
works when processing high-resolution medical volumes. However, at-
taching undue importance to global context modeling may inadvertently
compromise critical local structural information, thus leading to bound-
ary ambiguity and regional distortion in segmentation outputs. There-
fore, we propose the HybridMamba, an architecture employing dual com-
plementary mechanisms: 1) a feature scanning strategy that progressively
integrates representations both axial-traversal and local-adaptive path-
ways to harmonize the relationship between local and global represen-
tations, and 2) a gated module combining spatial-frequency analysis for
comprehensive contextual modeling. Besides, we collect a multi-center
CT dataset related to lung cancer. Experiments on MRI and CT datasets
demonstrate that HybridMamba significantly outperforms the state-of-
the-art methods in 3D medical image segmentation.

Keywords: State space model - Mamba - Frequency and spatial feature
modeling - 3D medical image segmentation.

1 Introduction

In clinical diagnostic workflows, achieving voxel-level precision in pathological
region segmentation from 3D medical imaging modalities (e.g., CT, MRI) consti-
tutes a critical prerequisite for quantitative disease characterization [25]. While
deep learning architectures have demonstrated remarkable potential in medi-
cal image segmentation, thereby reducing inter-observer variability and clinician
workload, there still exist fundamental limitations. Traditional Convolutional
Neural Networks (CNNs) suffer from structural constraints in modeling long-
range dependencies within medical image segmentation due to their intrinsic
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locality [3]. Deep learning architectures have shown great promise in medical
image segmentation by minimizing inter-observer variability and clinician work-
load. However, traditional Convolutional Neural Networks (CNNs) are funda-
mentally limited by structural constraints that hinder their ability to model
long-range dependencies due to their inherent locality [3]. Recent attempts like
3D UX-Net [12] endeavor to mitigate this issue by expanding effective receptive
fields through large-kernel convolutions, but still have constraints in modeling
global relationships.

The emergence of Transformer architecture [19] has notably enhanced the
modeling of global context through self-attention mechanisms, effectively ad-
dressing the limitations of CNNs in capturing long-range dependencies. For in-
stance, UNETR [8] merges the Vision Transformer (ViT) [4] into the encoder to
capture contextual information and utilizes a convolutional decoder with multi-
scale skip connections to learn local features together for 3D medical image seg-
mentation. Similarly, SwinUNETR [7] employs the SwinTransformer [14] in its
encoder to enable efficient extraction of features at multiple resolutions. Nonethe-
less, these Transformer-based methods imposes significant scalability constraints
for high-resolution 3D medical imaging analysis. This computational bottleneck
manifests particularly in memory-intensive segmentation tasks like biomedical
image segmentation,resulting in suboptimal throughput rates during both train-
ing and inference phases despite recent hardware advancements.

Emerging from State Space Model, Mamba [5,[21}/24] presents an innovative
approach to long-range dependency learning through selective mechanism and
hardware-efficient algorithms. This paradigm achieves CNN-level training sta-
bility coupled with RNN-like inference efficiency [6], all maintained within linear
computational complexity. Current advances demonstrate growing applications
of Mambas in medical imaging analysis: In 2D contexts, U-Mamba |15] augments
standard nnUNet frameworks [10] by integrating directional scanning modules
into encoder pathways, significantly enhancing the performance in medical im-
age segmentation. Moreover, Swin-UMamba [13] strategically incorporates large-
scale ImageNet pretrained representations, thereby enhanceing Mamba’s efficacy
in clinical image segmentation scenarios. For 3D medical image analysis, Seg-
Mamba [27] pioneers voxel-level contextual modeling through its tri-orientated
Mamba (ToM) module for feature modeling and gated spatial convolution (GSC)
module for the representation enhancement of spatial features. However, Existing
2D methodologies fail to address cross-slice correlations inherent in volumetric
datasets effectively; meanwhile SegMamba exhibit suboptimal coordination be-
tween localized feature retention and global context integration when processing
hierarchically partitioned image patches.

In this paper, we propose HybridMamba, a hierarchical architecture address-
ing two fundamental challenges in 3D medical image analysis: 1) multi-resolution
contextual preservation across spatial scales; and 2) synergistic integration of
frequency-spatial feature representations. To our best knowledge, this is the
first method to deploy the feature extraction strategy in both the frequency
domain and the spatial domain to facilitate more accurate and robust rep-
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Fig. 1. The overview of the proposed HybridMamba. The encoder consists of a multiple
S-LMamba blocks for balancing local and global features and an FFT Gate Mechanism
(FGM) for merging the features from spatial and frequency domain dynamically ac-
cording to the characteristics of different layers.

resentations on multiple 3D medical image segmentation tasks. Consider the
non-negligibility of relationships between global and local information, we de-
sign a fused ergodic mechanism named SoMamba (Slice-oriented Mamba) and
LoMamba(Local-oriented Mamba) to increase the sequential modeling of 3D fea-
tures. Following this, we further propose the gated mechanism that dynamically
weights frequency-transformed features against spatially encoded patterns prior
to cascaded Mamba processing stages. We verify the superior performance of
the proposed HybridMamba on both public MRI dataset and our collected CT
dataset. The results of experiments showcase the efficiency of our method.

2 Method

In this section, we introduce the implementation approach of HybridMamba,
which is built upon SegMamba with the particular improvements on encoder.
We incorporate the frequency domain feature into encoder modeling by utilizing
the gated mechanism before transforming from two kinds of traversing pathways
to sequence. Fig. [I| demonstrates the overview of HybridMamba. The details of
the encoder will be further described in this section.

2.1 Slice-Local Mamba (S-LMamba) Block

It is of great necessity to utilize Mamba to model long-range dependencies within
3D high-resolution biomedical image segmentation . While transformer
architectures effectively capture global information, they impose sub-
stantial computational costs when processing excessively long feature sequences.
Accordingly, Mamba is utilized especially for high-resolution biomedical image
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Fig. 2. The left side (a) and (b) shows the detailed implementation in SoMamba and
LoMamaba. The right side (c) demonstrates the specific layers in the FGM.

field. It fully leverages long-distance modeling while being exponentially more
computationally efficient than the Transformer framework. However, prioritizing
long-distance dependencies overlooks the extraction of local segmentation infor-
mation within and between slices, potentially leading to incoherent partitioning
and inadequate semantic understanding in the model. Drawing inspiration from
the scanning method presented in Local Mamba IEII, we design an S-LMamba
Block to partition all slices of the medical image, generating windows of a desired
size according to different scales in each layer. We also recognize the importance
of long-distance dependencies throughout the training process. Therefore, we in-
troduce a slice-oriented traversing strategy to enhance the learning of contextual
information within the medical image. This approach allows Mamba to extract
more relevant segmentation information from the sequences.

The encoder illustrated in Fig. [1} is composed of multiple S-LMamba blocks
and FGM modules. After the initial preprocessing of the input 3D volume I €
RA8XDXHXW hyusing a large convolutional layer with a kernel size of 7 x 7 x 7,
the resulting 3D feature zq € R*8% FXEXYT iy processed through the S-LMamba
blocks and FGM modules, along with subsequent down-sampling layers. For the
nt? S-LMamba Block, the computational operation can be defined as:

i!, = MLP(IN(SoMamba (LN (%)) + LoMamba (LN (1)) +2%)) + &, (1)

where the SoMamba and LoMamba refer to the proposed Slice-oriented and
Local-oriented Mamba module, respectively, which will be discussed next. [ €
{0,1,...,n — 1}, LN refers to layer normalization, and IN refers to instance nor-
malization. MLP refers to the multi-layer perceptron for enriching the feature
representation.

Slice-orientated Mamba (SoMamba) and Local-orientated Mamba (Lo-
Mamba). The Mamba layer captures feature dependencies by flattening the



HybridMamba: A Dual-domain Mamba for 3D Medical Image Segmentation 5

3D features into a 1D sequence. Managing the order of this flattening pro-
cess is crucial, as it directly impacts the model’s learning efficiency. To opti-
mize the arrangement of the flattened 1D sequence, we introduce the Slice-
orientated Mamba (SoMamba) and Local-orientated Mamba (LoMamba) mod-
ule illustrated in part (a) and (b) of Fig.

SoMamba(xz) = Mamba(z¢) + Mamba(z,), (2)

LoMamba(z) = Mamba(x;r) + Mamba(z;,) + Mamba(zs), (3)

where Mamba denotes the Mamba layer to model the global information within
the sequence. f and r in Eq. [2| denote forward and reverse direction respectively.
If, lr, and s in Eq[3| refer to local-window forward direction, local-window re-
verse direction, and local-window across slices, correspondingly.

For SoMamba, we design a traversing path that spans the entire slice in both
forward and reverse directions to compute feature dependencies, aiming to ef-
fectively capture the global information inherent in high-dimensional features.
Additionally, we observe the presence of short-distance dependencies within the
overall medical image, particularly as lesion areas may constitute a smaller pro-
portion of the total. To address this, we design a Local modeling strategy known
as LoMamba to focus on the adjacent pixels with the same semantic region,
which empower the model to better aggregate the features because of more com-
pact physical position of key information after flattening into a 1D sequence.

Fig. [3] showcases the distinction between normal scanning and local scanning
modes using the example of the local flattening sequence with a window size
of three. In practice, the size of the local window is determined dynamically by
the proportion and location of key information areas within the overall medical
image. To be specific, the sequence through the standard flattening method ex-
hibits a considerable distance between neighboring pixels that contain important
segmentation information. In contrast, the continuous key segmentation pixels
flattened by local windows of size three manifesting a strong distance coherence
to a certain extent.

L J
Y

Long distance
(a) Normal flattening sequence

FrRw [ 7707 NHE NENER

(b) Local flattening sequence

Fig. 3. Take 3 x 3 local window size around segmentation key area on one slice as an
example. Sequence (a) showcases the normal flatten method, which traverse the whole
image patches from beginning to end. Sequence (b) demonstrates the local flatten
method.
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2.2 FFT Gated Mechanism (FGM)

Fast Fourier Transform (FFT) [2] is leveraged to calculate the frequency values
from spatial domain. In cases of CT images with poor contrast and high noise, as
well as MRI images affected by artifacts, frequency information from high level
and low level can correspondingly provide some boundary and shape cues to the
model [30], which enables it to capture a wider range of feature representations,
thus increasing the robustness. Furthermore, as highlighted in [29], the deeper
layers of deep neural network tend to retain more low-frequency information. To
capitalize on this, we design the FFT Gated Mechanism (GSM) to integrate the
frequency and spatial features to enhance the performance of Mamba model. As
illustrated in subgraph (c) of Fig. [2| the input 3D features are first fed into a
convolution block, which contains a convolution, a normalization, and an activa-
tion layer. Then, the feature are transformed into the Fourier domain according
to different layers, being extracted high and low frequency leveraging learnable
thresholds within a filter. Subsequently, conducting inverse FFT to transform
the required frequency feature back. Finally, a convolution block is used to fur-
ther fuse the frequency features and spatial features after gated multiplication,
while a residual connection is utilized to reuse the input features.

ztre = IFFT(Filter( FFT (2))), Zout = X5 * gate + xge * (1 — gate),  (4)
(5)

Filter — 4 £ * (|z] < fiow), X € low-level frequency,
| @ (|z] > fuign), X € high-level frequency,

where gate = Convsysxs(zs, 2s) is used to get the prior embedding to realize
the coordination of features in spatial domain and frequency domain. fiow, frigh
denote the learnable thresholds of the filter with the initial values set to 0.1 and
0.9 respectively.

3 Experiments

3.1 Datasets and Implementation Details

BraTS2023 Dataset |1, 11,{16]. This dataset comprises 1,251 3D MRI volumes
of the brain. Each volume is presented in four different imaging modalities: T1,
T1Gd, T2, and T2-FLAIR. Three segmentation targets are identified within each
volume: Whole Tumor (WT), Enhancing Tumor (ET), and Tumor Core (TC).
Lung Cancer (LC) Dataset. We gathered a collection of 828 3D chest CT
scans from multiple centers, focusing on cases of central type lung carcinoma with
small lesions. These cases pose inherent challenges in detection and analysis, as
they appear as subtle anomalies within the imaging data. Each volume contains
a single segmentation target, with the dominant lesion accurately annotated for
each case. The visualization of this dataset is depicted in Fig[4]
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Fig. 4. The data visualization for LC dataset, which highlights the challenges posed
by small lesions, which can be difficult to detect and analyze.

Evaluation and Metrics. In line with established approaches 27|, we employ
the Dice score (Dice) and Hausdorff Distance (HD95) to quantitatively assess our
network’s performance and compare it with state-of-the-art (SOTA) methods.
Implementation Details. Our model is developed using PyTorch 2.0.1 with
CUDA 11.8 and Monai 1.3.0. During training, we apply a random crop size of 128
x 128 x 128 and utilize a batch size of 2 per GPU for each dataset. We employ
cross-entropy loss for all experiments, using an SGD optimizer with a polynomial
learning rate scheduler (initial learning rate set at le-4 and a decay rate of 3e-5).
Each dataset undergoes 1000 training epochs, and we incorporate the following
data augmentations: additive brightness, gamma correction, rotation, scaling,
mirroring, and elastic deformation. All experiments are conducted on a cloud
computing platform equipped with four NVIDIA GeForce RTX 4090 GPUs. For
each dataset, we randomly assign 70% of the 3D volumes for training, 10% for
validation, and the remaining 20% for testing.

3.2 Experimental Results
Compared Methods. We evaluate our network by comparing it to six state-

of-the-art (SOTA) 3D image segmentation methods, which includes three CNN-
based approaches (SegResNet [17], UX-Net [12], MedNeXt [18]), two transformer-

Table 1. Quantitative comparison on BraTS2023 dataset. The bold value denotes the
best performance.

BraTs2023 \ LC
Method WT TC ET Avg Lung Cancer
GO9S Dicet HDY5) Dicet HD95) Dicet HD95] Dicet HD95]|Dicet HD95]
SegresNet [17] 92.02 4.07 89.10 4.08 83.66 3.88 88.26 4.01 |71.56 55.03
UX-Net [12] 93.13 4.56 90.03 5.68 8591 4.19 89.69 4.81 |72.63 59.06
MedNeXt [I8] 92.41 4.98 87.75 4.67 83.96 451 88.04 4.72 |57.76 111.47

UNETR [8] 92.19 6.17 86.39 5.29 84.48 5.03 87.68 5.49 |65.12 101.7
SwinUNETR |7] 92.71 5.22 87.79 4.42 84.21 4.48 88.23 4.70 |65.83 89.27

SegMamba [27| 93.61 3.37 92.65 3.85 87.71 348 91.32 3.56 ‘72.36 60.33
Ours 94.10 3.78 92.84 3.30 88.83 3.35 91.92 3.48 ‘75.34 44.52
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Fig. 5. Visual comparisons of proposed HybridMamba and state-of-the-art methods.

based methods (UNETR |8] and SwinUNETR |7]), and one Mamba-based tech-
nique (SegMamba [27]).

Quantitative Comparisons. Table [I]summarizes the Dice score and HD95 for
each modalities on BraTS2023 and LC dataset and the total average scores. For
BraTS2023 dataset, SegMamba, the Mamba-based method, achieves the best
performance among the comparison methods, with an average Dice of 91.32%
and an average HD95 of 3.56. In comparison, our HybridMamba achieves the
highest Dice of 94.10%, 92.84%, and 88.83% on WT, TC, and ET, respectively,
and the best HD95 with 3.30 on TC and 3.35 on ET except for 3.78 on WT. All in
all, the total average scores shows the best segmentation robustness. In addition,
our HybridMamba outperforms the SOTA method exceeding 2.98% for Dice and
15.81 for HD95 on LC dataset, getting 75.34% and 44.52% respectively. This
proves the most effectiveness of HybridMamba compared to other approaches.
Visual Comparisons. We choose six comparative methods for visual assess-
ment on two datasets to evaluate image segmentation performance. As shown
in Fig. 5l our HybridMamba effectively delineates the boundary of each tumor
region in the BraTS2023 dataset. Similarly, our approach successfully identi-
fies cancerous areas in the LC dataset. The segmentation results demonstrate
enhanced consistency compared to other state-of-the-art techniques.

Ablation Studies. Table [2| confirms the effectiveness of both S-LMamba (M1)
and FGM (M2) modules on the LC dataset. S-LMamba improves SegMamba’s
Dice by 1.47% to 73.83% and reduces HD95 by 9.45 to 69.78. FGM further boosts
Dice to 74.98% and reduces HD95 by 18.35 to 51.43. HybridMamba, combining
both modules, achieves optimal results with 75.34% Dice and 44.52 HD95.

Table 2. Ablation study for different modules on LC dataset.

Modules .
Methods S-LMamba FGM Dice T HD95]
SegMamba 72.36 69.78
M1 v 73.83 60.33
M2 v 7498 51.43

Ours v v 75.34 44.52
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4 Conclusion

In this work, we have developed HybridMamba to enhance the 3D biomedical
segmentation task. Specifically, our network makes two primary contributions.
First, we devise the S-LMamba block to effectively balance the modeling of global
and local dependencies. Second, we aggregate frequency features with spatial
features to enhance the representation of the model. Experimental results on two
datasets demonstrate that our framework clearly outperforms SOTA methods
in terms of 3D medical image segmentation task.
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