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Abstract. Retinal image analysis not only reveals the microscopic struc-
ture of the eye but also provides insights into overall health status. There-
fore, employing multi-task learning to simultaneously address disease
recognition and segmentation in retinal images can improve the accu-
racy and comprehensiveness of the analysis. Given the need for medical
privacy, federated multi-task learning provides an effective solution for
retinal image analysis. However, existing federated multi-task learning
studies fail to address client resource constraints or knowledge discrep-
ancies between global and local models. To address these challenges,
we propose FedBKD, a novel federated multi-task learning framework
for retinal image analysis. FedBKD leverages a server-side foundation
model and effectively bridges the knowledge discrepancy between the
clients and the server. Before local training, the adaptive sub-model ex-
traction module ranks the activation values of neurons in the global
model. It extracts the most representative sub-model based on compu-
tational resources, thereby facilitating the local adaptation of the global
model. Additionally, we design a feature consistency optimization strat-
egy to ensure alignment between the local model and the global foun-
dation model’s prior knowledge. This reduces error accumulation in the
client sub-model during multi-task learning and ensures better adapta-
tion to local tasks. Experimental results on the multi-center retinal image
dataset demonstrate that FedBKD achieves state-of-the-art performance.
Our code is available at https://github.com/Yjing07/FedBKD.git.
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1 Introduction

With the rapid development of artificial intelligence, foundation models (FM)
have shown great potential in the medical field [19, 11], especially in retinal im-
age analysis. For instance, RETFound [21], trained on over 1.6 million retinal
images, has demonstrated excellent performance in diagnostic and prognostic
tasks of ocular diseases, highlighting its powerful image understanding capabil-
ities. Retinal images provide detailed information about the microstructure of
the eye but also indicate diseases linked to overall health. Symptoms and lesions
of these diseases can manifest in different regions and layers, requiring multi-
task learning for accurate recognition, segmentation, and prediction. However,
individual medical institutions face challenges like lacking annotated data and
resource limitations. At the same time, considering privacy protection and data
security, developing a solution that enables collaborative training across multiple
medical centers while ensuring data privacy and enhancing the application capa-
bilities of FM has become an important research direction with vast potential.

Federated Multi-Task Learning (FMTL) combines the advantages of feder-
ated learning (FL) and multi-task learning by centrally aggregating model up-
dates, reducing the risk of sensitive data leakage. It enables the model to learn
multiple related tasks simultaneously, sharing common features and significantly
improving task performance. For instance, MaT-FL [3] and FedHCA? [15] op-
timize task collaboration efliciency by dynamically adjusting client grouping or
strategies. However, these approaches do not adequately address resource limits
among different clients. Studies like FedDrop [4,6], HeteroFL [7,10], and Fe-
dRolex [1] have introduced strategies that randomly, statically, or rolling select
sub-models of the global model for local training. However, they also present two
key challenges. Firstly, discarding specific neurons to reduce computational and
communication burdens does not fully adopt the global model. Directly remov-
ing neurons from the FM may cause the sub-model to lose some task-relevant
features, particularly in segmentation tasks. Secondly, multi-task learning for
retinal images requires the model to simultaneously handle functions with dif-
ferent features. Due to the knowledge discrepancy between the sub-model and the
global model, gradient errors accumulate during training, affecting the model’s
accuracy and stability.

To address these challenges, we propose a novel federated multi-task learn-
ing framework for retinal image analysis with Bridging Knowledge Discrepancy
(FedBKD), which integrates two key components: the Adaptive Sub-model Ex-
traction (ASE) module and the Feature Consistency-based Optimization (FCO)
strategy. The ASE module ranks the activation values of neurons in the server-
side FM. It extracts the most representative sub-model for each client, facili-
tating the local adaptation of the global model. This module ensures that the
sub-model focuses on the most significant features of local tasks, thereby enhanc-



Retinal Image Analysis 3

i Server Layer i G @y Layer i
H / @ b{ ) b Ia;‘
Ebﬁ"i Gy % (gD
et v @ — @
E &) ! d: ( @ ‘: Aggregate Bl
ag LRt @ o ),
@y 05! ﬁZ(a1.]I(u, £0) + -+ @y 1(ay # 0)) @) 6
ool i=1 oo
— t-1 t
@1 e @T p o]0 ®| o
/777 Adaptive Sub-model Extraction "\ Client1 % ¢ Clientk
: /7 S . o

Layer i Layer i

s A o " | Adaptive Sub- | <
WD [, 4 H — el |

e latt V— — Y . model P — ™
1(bg h ',,ﬂm " L H Extraction '

[ 1bg N X H '

&) et H e ;

@ N " L L
W9 Tet-1 N sim (1, fg) sim(fie: fg)
e gt-1 1% | N

@ b N ) @ | Updata .
b Neurons Activation Value' .

b

@ l Updata / N ¢
4 L pred s /
esz ) tocal 1 Y1) , A Liocal O™ y0)
{

b b )
‘ g A ® -
— &0 O b - 'E
Training @ p $ Training @
g \ @
@) oi1 f Task1 yrred @ oot f Taskk ypred

Fig. 1. The workflow of FedBKD. Each client first localizes the received encoder using
ASE (Section 2.2). Then, the client performs local training and global parameter up-
dates using the FCO (Section 2.3).

ing the adaptability of the FM across different tasks. The FCO strategy opti-
mizes feature consistency between the global and local models, ensuring feature
consistency from client training and global parameter aggregation perspectives.
This strategy effectively bridges the knowledge discrepancy caused by feature
differences in retinal images, further reducing gradient errors and improving the
overall performance and stability of the sub-model.

Our main contributions are summarized as follows: (1) We introduce Fed-
BKD, a novel FMTL method that uses FM to assist in training different com-
puting clients and dynamically optimize knowledge discrepancy. FedBKD en-
hances model adaptability in heterogeneous client environments by adaptively
extracting key neurons from the global model. (2) We introduce a feature con-
sistency optimization strategy that aligns the client sub-model with the global
model, ensuring effective knowledge transfer and significantly improving task
performance. (3) We validate FedBKD on the multi-center retinal dataset and
achieve state-of-the-art (SOTA) performance in multi-task scenarios.

2 Methods

2.1 Preliminary

Given K clients, each client k with a local dataset Dy, = {(z%,yi),i =1,2,..., Ny},
where Ny, is the number of samples, the tasks are private to each client. The lo-
cal model parameters for client & are denoted as 0, and its model capacity G
represents the proportion of neurons extracted from the global model, where
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0 < Br < 1. During training, each client performs local updates using private
data. Afterward, the server aggregates the encoder parameters from all clients
to improve the global model, while task-specific decoders are excluded from the
global update. The overall framework of our FedBKD is shown in Fig. 1, and
the pipeline is detailed in Algorithm 1.

2.2 Adaptive Sub-Model Extraction

Due to the limitations in computation and storage on the client side, it cannot
support the training tasks of a large-scale global model. In contrast, the server
side has more substantial computational resources, making it a key challenge to
extract a small model suitable for the client from the large model. This study
proposes an adaptive sub-model selection method based on neuron activation
values, which extracts a task-specific sub-model from the FM while maximizing
the utilization of client resources.

Each Transformer layer comprises two key components: Multi-Head Self-
Attention (MHA) and Feed-Forward Network (FFN). To filter the most influ-
ential neurons, we calculate the activation values and importance of the global
model’s neurons, considering the client’s model capacity. The output of a specific
layer is then obtained through the FFN, defined as:

aFFN(x) = W2 . gelu(le + bl) + bz, (1)

where W, € RIFFNXdmodel gnd W, € R%model XAFFN gre weight matrices, and by
and by are bias, dppy is the dimensions of FFN hidden layer and set 4 X dpodel-
Here, the activation function gelu(-) is applied element-wise to the result of the
linear transformation W +b;. To further assess the importance of the neurons,
we combine the mean and variance of the activations, proposing the following
saliency measure:

Y(m) = (a(m))* +5(m), (2)

where:

=1

1(m) = 2 S (gelu(Ws + by — a(m))?.
Here, a(m) represents the mean activation value of the m-th neuron across
all samples, and «(m) represents the variance of the activation values for the
m-th neuron. The top [; neurons are selected based on the saliency measure
¥(m), and a sub-model is constructed using these neurons. By adjusting the
client’s parameters, we ensure that sub-model is tailored to the specific task
requirements of each client while effectively reducing the computational burden
on client devices.

{a(m) - i SN (gelu(zWy + b1 )m) » 3

2.3 Feature Consistency-based Optimization Strategy

Due to the significant capacity difference between server and client models, fea-
ture inconsistencies lead to gradient error accumulation during the training pro-
cess. We propose a FCO strategy to tackle this challenge from both local training
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Algorithm 1: FedBKD

Input: Local datasets {Dy}r_;, Server parameters 65, total communication
rounds 7', learning rate 7.

Output: Trained models 7 = {9?), ce HEKT)}, o).

1 fort=1toT do
2 Clients initialize models ) = {th), . ,9%)} with Eq. 2
3 for k=1 to K do
4 Compute losses Liotal with Eq. 5
5 (Ogﬁ-l, UJZ+1) — (0276‘)1@) -n: VLtOtal(W;()
6 Client uploads its parameters: HZH
K 1 1
7T Server parameter status update: ﬁ o1 O IO, );

and global aggregation perspectives. Local training feature consistency aims to
bridge the knowledge discrepancy between the global and local models. Global
aggregation feature consistency extracts consensus from task-specific clients to
mitigate task discrepancies.

Local training feature consistency: Center Kernel Alignment (CKA) is
widely used to measure representation similarity [22]. Inspired by this, we op-
timize representation similarity by leveraging the guidance of the global model,
which helps reduce knowledge discrepancies, mitigates the accumulation of gra-
dient errors, and enhances the accuracy of the client model.

We define fi, as the feature matrix for the k-th client and the f, for the global
feature. The Gram matrices f{ fi and fg fq capture the intrinsic structure and
similarity between the models, and the similarity matrix between these matrices
is given by:

_ nli @

LAl 15 Tl

where ||-|| r represents the Frobenius norm [9], which ensures that the comparison
of matrices is unaffected by scale differences, focusing on their structural similar-
ities. We incorporate this feature alignment loss into the original loss function,
resulting in the total objective. The final objective function is:

»Ctotal - ﬁlocal (flm y) + A »Csim (fka fg) ) (5)

where Loca1 is the local loss, and A is a hyperparameter controlling the weight
of the feature alignment.

Global aggregation feature consistency: Inspired by LG-Mix [12], we pro-
pose an eigenvalues weighted aggregation strategy to mitigate feature hetero-
geneity’s impact on global model consistency. We first center each client’s fea-
ture matrix to remove bias, then compute the covariance matrix and apply sin-
gular value decomposition to obtain eigenvalues. These eigenvalues are used to
weight the features, giving different importance to each sub-model during ag-
gregation. It reduces feature heterogeneity’s negative impact and improves the

Esim (fkvfg)
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global model’s consistency and robustness, especially in resource-constrained
scenarios. Formally, the covariance matrix Cy, is computed and eigenvalue de-
composition yields eigenvalues pj and eigenvectors vy:

C, =1 (x, LN X, — L 5N 4
k Ny k Ne Zk:l Xk,n k e Zk:l Xk,n ) (6)
Crvi = Up Ve,

where xy, ,, is feature of the k-th client. We then assign weights wjy, based on the
normalized eigenvalues:
Kk
Wg = —f¢ > (7)
Ek:1 1225

This weight represents the client’s relative importance in the aggregation process.
A higher weight for a client indicates a more significant contribution to the global
model.

Table 1. Comparison to representative methods using multi-center retinal datasets for
five clients. A,, represents the average change in performance for each task compared
to local training (The client only uses local data for local training without FL).

Segmention Classification
Method B=1/16|8=1/8|8=1/4|5 =1/2|average| S = 1/2 | average
Dice Dice Dice Dice A Acc A

Local 79.16 79.40 88.95 90.53 0.0 71.71 0.0
FedProx [14] 82.98 79.02 89.54 91.44 | +1.23 | 72.99 | +1.28
Ditto [13] 82.13 80.51 89.73 91.26 | +1.40 | 73.52 | +1.81
FedDrop [4] 75.37 74.78 87.82 89.68 -2.60 72.06 | +0.35

FedRolex [1] 76.08 75.32 89.18 90.44 -1.76 72.26 -6.45
HeteroFL [7] 82.15 80.65 89.65 90.87 | +1.32 | 73.90 | +2.19
MaT-FL [3] 80.61 81.15 89.38 89.15 | +0.56 | 73.71 | +2.00
FedHCA? [15] 81.02 81.72 89.85 90.46 | +1.25 | 72.24 | +1.63
FedBKD (Ours)| 83.54 | 84.14 | 90.06 | 92.21 | +2.98 | 75.92 | +4.21

3 Experiments
3.1 Datasets and Implementation

Datasets We conduct experiments on public datasets collected from five dif-
ferent centers. For the segmentation task [2, 16, 17], we followed prior work [18§],
where the target region of each image was center-cropped and resized to 384 x 384.
The sample numbers for each client were 101, 159, 400, 400, and the training,
validation, and test sets for each client were split in a 7:1.5:1.5 ratio. For the
classification task, we used the Kaggle APTOS 2019 Blindness Detection (AP-
TOS2019) dataset, which contains 3662 images.

Implementation Details According to the conclusion in [1], using large models
on large-scale datasets for training is more advantageous. In our experiments, we
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Table 2. Ablation study of the main components of FedBKD.

Segmention Classification

Method B=1/16|8=1/8|B8=1/4|8 =1/2|average |8 = 1/2 | average
Dice Dice Dice Dice Am Acc A
Local 79.16 79.40 88.95 90.53 0.0 71.71 0.0

FedBKD ASE | 82.36 82.79 89.87 91.00 | +1.99 | 73.54 | +1.83
FedBKD FCO | 83.21 83.92 89.36 91.44 | +2.47 | 74.08 | +2.37
FedBKD (Ours)| 83.54 | 84.14 | 90.06 | 92.21 | +2.98 | 75.92 | +4.21

set K to 5 and define 5 as {1/2,1/2,1/4,1/8,1/16} based on the amount of local
data, where 1/2 indicates that the client model encoder has half the capacity
of the server model parameters. The global model uses RETFound [21], with
Vision Transformer (ViT) [8] as the backbone. The decoder of the segmentation
model uses DeepLabv3+ [5], and the decoder of the classification model uses a
simple linear layer. During training, clients share only the backbone. All models
are trained for 200 communication epochs. For the classification task, we use
accuracy (Ace, %) as the evaluation metric, and the loss function is cross-entropy.
For the segmentation task, we use Dice (%) as the evaluation metric, and the
loss function is a combination of IoU and cross-entropy, with the loss function
evaluation parameter A set to 1.

3.2 Comparison with State-of-the-Arts Methods

To evaluate the performance of FedBKD, we compare it with representative
studies, including traditional FL approaches, FedProx [14], and Ditto [13], as
well as three methods under resource constraints: FedDrop [4], FedRolex [1],
HeteroFL [7], and two FMTL methods: MaT-FL 3] and FedHCA? [15]. Table 1
demonstrates that FedBKD consistently outperforms all other methods across
most metrics. In the segmentation task, FedBKD achieves significant improve-
ments across all § values. Specifically, we observe an average Dice improvement of
+2.98, with substantial gains in lower model capacity clients(8 = 1/16, 8 = 1/8).
In comparison, methods like FedDrop [4] and FedRolex [1] show consistent per-
formance degradation, particularly in lower-capacity models, with performance
drops in both segmentation and classification tasks. For classification, FedBKD
achieves an average accuracy of 75.92%, with a notable improvement of +4.21
in the average A,, compared to local training. The performance improvement
can be attributed to FedBKD’s ability to optimize feature alignment, ensuring
better adaptability to task diversity and effectively demonstrating its advantage
in handling diverse clients and complex tasks.

3.3 Detailed Analysis

We conduct a series of ablation experiments to evaluate the contribution of each
component in FedBKD, and the experimental results are presented in Table 2.
FedBKD ASE refers to the model with the ASE module, and FedBKD FCO
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Table 3. The impact of different hyperparameters A on the performance of segmenta-
tion and classification tasks.

Segmention Classification
Method |3 =1/16|5=1/8|58=1/4|5 = 1/2|average | 8 = 1/2 | average
Dice Dice Dice Dice Am Acc A
A=0 82.36 82.79 89.87 91.00 0.00 73.54 0.00
A=02| 8321 82.83 89.62 91.27 | +0.23 | 73.89 | +0.35
A=0.5 83.47 83.54 89.90 91.23 +0.53 74.08 +0.54
A=0.8| 83.50 83.89 89.99 91.62 | +0.75 | 75.18 | +1.64
A=1.0| 83.54 84.14 90.06 92.21 | +0.98 | 75.92 | +2.38
A=1.2 81.31 82.04 89.76 90.92 -0.50 75.00 +1.46

Segmentation Segmentation Segmentation Segmentation Classification
5
. p=1/16] | p=1/8 B=1/4] s B=1/2] ,] B=1/2
44 2]
51 34 34
34
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RN 29 24
S 3] 27 21
o 14
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. r : " : : - - . .
Ours Local Ours Local Ours Local Ours Local Ours Local

Fig. 2. The benefits of FCO via observing the feature activation value of the model
encoder.

refers to the model using FCO. In segmentation tasks, FedBKD ASE outper-
forms local across all § values, notably improving at 5 = 1/16 and 8 = 1/8.
In classification tasks, FedBKD ASE improves accuracy by 1.83% at 8 = 1/2
compared to the local training. Ultimately, FedBKD combines the strengths
of both approaches, achieving the best performance with an average improve-
ment of 2.98% in segmentation and 4.21% in classification tasks. These results
demonstrate that incorporating the ASE module and FCO strategy significantly
enhances the model’s overall performance.

Table 3 shows that as the hyperparameter A increases, both segmentation and
classification performance improve. However, A has a more significant impact on
the classification task. This is likely because the global model only contains the
shared encoder, while the segmentation task relies more on the locally specific
decoder. As ) increases further to 1.2, performance slightly decreases, indicating
that when A\ exceeds 1, the local model becomes overly focused on aligning
with the global model, neglecting the demands of the current task. Therefore,
A = 1.0 achieves the best balance between segmentation and classification tasks,
providing optimal performance.

We analyze the feature distribution to assess the performance of the FCO.
Suppose the model has learned effective feature representations. In that case,
the relevant neurons should show strong activation [20], with activation values
exceeding a predefined threshold (in this study, ReLU with a threshold of 0). The
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results from five clients are shown in Fig. 2. Our analysis indicates that FedBKD
achieves significantly higher feature activation values than local training. These
findings demonstrate that FedBKD can learn more accurate and meaningful
feature representations effectively.

4 Conclusion

In this paper, we propose FedBKD to address the challenges of FMTL in retinal
image analysis. By introducing the ASE module and FCO strategy, we success-
fully bridge the knowledge discrepancy between the server and the client models.
Under resource constraints, we effectively leverage the FM to enhance the multi-
task performance of the client models. Experimental results demonstrate that
FedBKD outperforms existing methods in handling task heterogeneity and re-
source limitations. This work offers valuable insights for future research and
practical applications in medical image analysis.
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