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Abstract. Multi-center fMRI data analysis faces significant challenges
such as data privacy concerns and data integration issues. Federated
learning, as an innovative distributed machine learning approach, en-
ables cross-center collaboration by sharing model parameters instead of
raw data. However, existing methods often struggle with improving the
robustness and inference efficiency of multi-center fMRI data processing.
To address these challenges, we propose a novel hypergraph-guided fed-
erated distillation framework(HGFD) for multi-center fMRI data anal-
ysis. HGFD utilizes a hypergraph structure to model the spatiotempo-
ral features of brain activity, capturing high-order correlations across
brain regions. Furthermore, a hypergraph-based knowledge distillation
approach is utilized to transfer high-order structural representations into
shallow neural networks, thereby preserving their ability for complex re-
lational inference and significantly enhancing computational efficiency.
In the federated learning process, participating centers only need to
share the parameters of their shallow neural networks to a central server.
Through parameter aggregation, each center’s shallow network can learn
the high-order structural information of other centers. Experiments on
multi-center fMRI dataset demonstrate that the proposed method not
only improves the robustness and consistency of fMRI-based prediction
tasks but also achieves efficient and accurate predictions while ensuring
data privacy.

Keywords: Hypergraph - Federated Learning - fMRI Analysis - Knowl-
edge Distillation.
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1 Introduction

Functional Magnetic Resonance Imaging (fMRI) captures the spatiotemporal
characteristics of blood oxygen level-dependent (BOLD) signals, providing a
non-invasive means to study human brain functional connectivity networks [1,2].
This advancement has shifted the early detection of Autism Spectrum Disorder
(ASD) from traditional behavioral assessments to intelligent diagnosis based
on dynamic brain network analysis [3]. However, deep learning-based predictive
models for brain disorders face a significant challenge of data scarcity. Medical
data sensitivity limits individual institutions to acquiring fewer than 200 ASD
samples, which is insufficient for training robust deep neural models.

Federated Learning (FL) [4,5] emerges as a privacy-preserving solution, en-
abling collaborative global model training through distributed model parameter
exchange without direct data sharing. Frameworks such as FedAvg [6], FedBN [7],
FedProx [8], and MOON [9] have demonstrated broad applicability in distributed
tasks. Recent years have witnessed a surge of FL-based methodologies [10-13]
specifically tailored for neurological disorder analysis, addressing challenges in
multi-center data utilization while adhering to stringent privacy constraints.

Brain networks are characterized by complex and higher-order interactions
among multiple regions, which traditional graph neural networks often fail to
capture. Hypergraph learning offers a natural and effective solution to this prob-
lem, as it models high-order relationships more expressively. Foundational work
such as [14-16] demonstrates the advantages of hypergraph representations in
various tasks. Based on this, recent studies such as I HBN [17] and HGTrans [18]
have applied hypergraph learning to predict brain disorders, highlighting its po-
tential to capture intricate brain connectivity patterns.

To balance the computational complexity of local models and communica-
tion efficiency, we employ knowledge distillation, where a complex teacher model
guides a simplified student model. The hypergraph structure effectively captures
high-order relationships, enriching the teacher model’s capability to represent in-
tricate brain features. Distilling this knowledge into a lightweight student model
enables the retention of key semantics while substantially reducing computa-
tional and communication overhead. This strategy safeguards data privacy and
enhances prediction performance in brain disorder analysis. A hypergraph con-
volution teacher model (BrainHGNN-Teacher) is designed at the client side to
model the nonlinear multi-region coupling relationships in the functional con-
nectivity of ASD patients. Knowledge distillation is performed locally on each
client, where a lightweight model (MLP-Student) learns from the BrainHGNN-
Teacher via KL divergence. During federated training, only the parameters of
the MLP-Student are uploaded to the server for aggregation, thereby reducing
communication overhead.

The main contributions are summarized as follows: (1) We propose a novel
hypergraph-guided federated distillation framework(HGFD) to capture higher-
order correlations in functional brain networks, overcoming the limitations of
traditional graph models. (2) Through hypergraph knowledge distillation, we
transfer complex information from BrainHGNN-Teacher model into a simpler
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Fig. 1: Pipeline of the proposed method. The left side illustrates the collaborative
process between multiple clients and the server; the right side presents the data
pre-processing procedure, the specific model architecture within each center, and
the model distillation process.

MLP-Student model, reducing computational and communication costs in fed-
erated learning. (3) We validate the proposed method on the ABIDE dataset,
showing superior performance and optimal results compared to traditional and
deep learning methods in a federated framework.

2 Methods

The pipeline of the proposed method is illustrated in Fig. 1.

2.1 Data Pre-processing

Data pre-processing is performed according to the pipeline described in I?H BN
[17]. We utilize the DPARSF [19] toolbox for pre-processing the raw ABIDE
data and adopt the AAL [20] atlas for brain parcellation. The brain space of
each individual is then parcellated into 116 regions of interest (ROI). Finally,
mean time series are obtained by calculating the processed fMRI data voxels.

2.2 Hypergraph Computation

Hypergraph Definition. A hypergraph is defined as G = (V, &), which con-
sists of a vertex set V), a hyperedge set £. A hypergraph G can be described by
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VIxlel,

an incidence matrix H € R where the entries are defined as H(v,e) =

1, ifvee
{O, otherwise
> ece H(v,e), and for a hyperedge e € £, the degree of e is defined as d(e) =

vcy H(v, e). D, and D, are respectively diagonal matrices representing the de-
grees of V and £. The initial feature of V is denoted as X = {x1, 22, -+ , N}, 2; €
RY, where C represents the feature dimension.

. For a vertex v € V, the degree of v is defined as d(v) =

Hypergraph Modeling. After pre-processing the data, the functional connec-
tivity (FC) between two different brain regions is calculated using the following

formula:
X poli,f) = Bl ~ Bl ~Eft;)] "

O'tiO'tj

where t; and t; represent the time series data of brain regions 7 and j, re-
spectively. The Pearson correlation value of the i-th ROI can be denoted as
Xrel(i) ={Xrc(i,1), Xpc(i,2), -, Xpe(i, 116)}.

We regard brain regions as hypergraph vertices, with the Pearson correla-
tion matrix serving as vertex features. We use the K-NN algorithm [21] to con-
nect Each vertex to its top-10 most feature-similar vertices to form hyperedges,
thereby constructing the hypergraph structure. The similarity between vertex
v; and vertex v; is measured by the Euclidean distance between Xpc (i) and
Xrc(j), computed as follows:

C 2
d (vi,v;) = (Z (Xrel(iye) = Xra(J, C))2> , (2)

c=1

where v; and v; denote the i'" and j*" vertices, respectively, and forms the
incidence matrix Hg. Finally, we can perform hypergraph computation on the
X e and Hy by stacking multiple layers of hypergraph convolution layers [14]:

XH—l _ (5(D;1/2HD;1HTD;1/2XZQl+1), (3)

where © is the learnable parameters and d(-) is the nonlinear activation function.
BrainHGNN-Teacher model consists of two layers of hypergraph convolution
layers, enabling the model to capture complex functional relationships between
brain regions.

2.3 Hypergraph Distilling Learning

Local update with Hypergraph distillation. The BrainHGNN-Teacher
model is trained using knowledge distillation, where the student model, a sim-
pler MLP network, learns from the more complex teacher model. During the
training process, the student model is optimized to minimize the knowledge gap
between its output and that of the teacher model, using the Kullback-Leibler
(KL) divergence loss:
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EKL = Z KL(pteacher(i)‘|pstudent (l))7 (4)

where preacher () and Pstudent (i) are the probability distributions generated by
the teacher and student models, respectively, for each sample. The teacher model
provides high-order semantic guidance to the student model, enabling it to learn
more detailed and meaningful features.

The total loss function is defined as follows:

L=a- ECE(/!/, fstu(x)) + (1 - Oé) : T2 : ‘CKL(ftea(w)/THfstu(x)/T)’ (5>

where it consists of two components: Log, the cross-entropy loss of the stu-
dent model, which measures the difference from the true labels; and Ly, the
KL divergence loss, which measures the discrepancy between the student and
teacher models. The temperature coefficient T is used to smooth the output of
the teacher model, while « controls the relative importance of two losses in the
total loss. This loss function combines hard targets (cross-entropy) and soft tar-
gets (KL divergence), enabling the student model to learn both from the true
labels and the knowledge distilled from the teacher model.

2.4 Hypergraph Federated Learning

Global update with local model. We design the hypergraph federated frame-
work based on FedAvg [6]. We set both the local models and the global model
to MLP models with the same network structure and the same learning rate.
For k local models, we compute their gradient gV Fj, (w;), which is the average
gradient of local data under the global model w;. Then, we update the global
model wyiq < wp — N Zszl “k g1, using the gradients of the local models, since

le 2 g, = V f (wy). An equivalent update is given by Vk,wf,, < wy — ng
and then w4y + Eszl Zqf, ;. That is, each local model locally takes one step
of gradient descent on the current model using its local data, and the global
model then takes a weighted average of the resulting models. We can add more
computation to each client by iterating the local update w* < w* — nV Fy (wk)
multiple times before the averaging step.

In the federated learning setting, the trained teacher and student models
are distributed across different client nodes, each using its local data to update
the models. The federated aggregation step only requires the transmission of the
student model’s parameters, significantly reducing the communication overhead.
This process ensures privacy while improving the accuracy and robustness of the
model for brain disease prediction tasks. The complete procedure is presented
in Algorithm. 1.
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Algorithm 1 The hypergraph-guided federated distillation framework(HGFD)

1: Input: f: : Teacher model, fs: Student model, « : Loss weight
2: procedure MAIN
3: for k =1 to nyfoq do

4: 07 « Initialize(fs)

5: forr =1to R do

6: 610 > Client models pool
7 for each client ¢ € C do

8: 05 «+ TrainTeacher(f;, Di™*™)
9: 05 < Clone(69)

10: 05 < Distill(0s, 05, E, T, )
11: O +— O U6}

12: end for

13: 07 < FedAvg(O)

14: end for

15: end for

16: end procedure

17: function DisTILL(0,, 0+, E, T, «)

18: fore=1to FE do
L=alos(fs(r),y)

19: Compute: )
+ (1= a)T" Lrr(fs(x) /T fe(x)/T)
20: Update 65 via VL
21: end for
22: return 6,

23: end function

3 Experiments

3.1 Experiment Settings

Dataset and Implementation Details. We evaluate the HGFD framework
on the Autism Brain Imaging Data Exchange (ABIDE) dataset. We partition the
ABIDE dataset into three sub-centers, comprising 340 (149 ASD / 191 normal
controls), 254 (130 ASD / 124 NC), and 252 (112 ASD / 140 NC) samples,
respectively. The data is split into training, validation, and test sets in a ratio
of 8:1:1, with five-fold cross-validation using stratified sampling to preserve class
balance. The input dimension and intermediate dimensions of the BrainHGNN-
Teacher model are 116, 696, and 232, respectively. During the distillation phase,
we set T to 3.0, a to 0.5, and utilized 50 training epochs. To mitigate overfitting,
given the limited size of the ABIDE dataset, we employed a learning rate of 0.001,
a dropout rate of 0.3, weight decay, and an early stopping strategy.

Evaluation Metrics. We evaluate the performance of our method using five
widely used metrics: Accuracy (ACC), Area Under the Curve (AUC), Specificity
(SPE), Sensitivity(SEN), and F1 Score. By integrating these metrics, we are able
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to conduct a more comprehensive assessment of the FedHGNN framework’s per-
formance in the autism brain imaging classification task. This approach ensures
that each aspect of performance is effectively considered, particularly in the
presence of class imbalance.

3.2 Compared Methods

Baselines. We conducted experiments to evaluate the performance of our model
against eight state-of-the-art methods in both centralized and federated learning
settings. The federated learning methods, including Fedavg, FedBN, FedProx,
and Moon, improve performance by optimizing parameter aggregation strategies
within the federated learning framework. Additionally, we compared our model
with more complex FL models, such as FedNI [10], FedBrain [11], OCS-ADA
[12], and FS2G [13], which incorporate specialized structures tailored for brain-
related tasks and are more suitable for brain task learning scenarios. Finally, we
also compared our model’s performance with that of an MLP [22] model in a
centralized setting.

3.3 Experimental Results

The experimental performance of all methods is shown in Table.1. The model
performance under the best-performing federated learning settings for each met-
ric is highlighted in bold. The proposed model demonstrated superior perfor-
mance compared to the baseline methods on four out of the five metrics, with
only slightly lower performance on the SEN metric. In summary, the experimen-
tal results confirm the effectiveness of the proposed model, demonstrating its
superiority in and federated learning environments.

Ablation experiment. To further analyze the effectiveness of our model’s
structure, we conducted a series of experiments to systematically evaluate the
contribution of each component to model performance. In the first set of experi-
ments, we investigated the impact of different teacher models within the knowl-
edge distillation framework on the student model’s learning effectiveness. Specifi-
cally, we compared the hypergraph-based teacher model with traditional models
such as BrainNetCNN, BrainNetTransformer(BNT), and BrainGNN. This al-
lowed us to assess the advantages of teacher models based on CNN, graph, and
hypergraph structures in brain task learning. As shown in Table.2, the hyper-
graph model excels in providing higher-order semantic guidance, which enables
the student model to better capture complex brain network features, thus en-
hancing overall model performance.

In another critical experiment, we examined the importance of the knowledge
distillation process itself on model performance. We tested the performance of
the MLP-Student model alone and the BrainHGNN-Teacher model alone. As
shown in Table.2, the performance of using either the student model or the
BrainHGNN-Teacher model alone was significantly lower than when both were
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Table 1: Comparison of different methods with their performance metrics.
Method ACC AUC SPE SEN F1

MLP 0.63+0.05 0.67+0.06 0.73+0.06 0.64+0.05 0.68=+0.05
Fedavg 0.61+£0.05 0.68+0.04 0.724+0.09 0.64+0.05 0.65=+0.07
FedBN 0.61£0.07 0.59+0.03 0.55+0.26 0.60=+0.04 0.52=+0.16
FedProx | 0.61£0.05 0.68+£0.04 0.70£0.05 0.64=+0.06 0.64=+0.05
Moon 0.63£0.05 0.69+0.05 0.69+0.06 0.66=+0.05 0.65=+0.04
FedNI 0.65+0.05 0.69+0.04 0.69+0.07 0.64+0.06 0.66=+0.06
FedBrain | 0.66 £0.04 0.64+£0.03 0.55£0.06 0.68=+0.03 0.58+0.03
OCS-ADA| 0.67 £0.06 0.62+0.05 0.61+0.09 0.69 4+ 0.07 0.62+0.31
FS2G 0.67£0.03 0.63+0.05 0.64+0.06 0.67+0.05 0.64+0.04
HGFD 0.70 £+ 0.05 0.69 £+ 0.05 0.73 + 0.11 0.65+ 0.06 0.67 + 0.06

combined. This indicates that neither the student nor the teacher model alone
can fully leverage their strengths in feature extraction and learning. When com-
bined, the student model benefits from the higher-order semantics of the teacher
model, particularly the complex features extracted from the hypergraph struc-
ture. This semantic guidance helps the student model better understand the
deeper relationships in the data, capturing more fine-grained features and ulti-
mately achieving better classification performance. The introduction of hyper-
graph knowledge distillation provides strong theoretical support and empirical
validation for the success of our model.

Table 2: Performance Comparison of Different Methods in Ablation experiment

Method ACC AUC SPE SEN F1

BrainNetCNN 0.59+0.04 0.65+0.04 0.60+0.15 0.64=+£0.06 0.59=+0.08
BNT 0.57£0.03 0.65+0.03 0.68+0.18 0.60+0.04 0.61+0.08
BrainGNN 0.61£0.04 0.68+0.03 0.70£0.09 0.63£0.03 0.64=+0.05
MLP-Student 0.59 £0.03 0.64+0.05 0.56+0.24 0.66 & 0.05 0.56 £0.11
BrainHGNN-Teacher| 0.62 +0.02 0.66 +0.02 0.70+£0.06 0.64£0.02 0.65=+0.03
HGFD 0.70 4 0.05 0.69 £ 0.05 0.73 = 0.11 0.65+0.06 0.67 4= 0.06
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4 Conclusion

This paper proposes a novel hypergraph-based knowledge distillation model for
brain-related tasks in federated learning. Extensive experiments confirm its ef-
fectiveness, showing that the hypergraph teacher model outperforms traditional
models by providing richer feature representations. The experimental results
highlight the importance of knowledge distillation, demonstrating that combin-
ing the student and teacher models yields superior performance. This validates
their complementary nature and the role of high-order semantic guidance in
feature extraction. Our findings underscore the potential of hypergraph knowl-
edge distillation for brain disease classification, offering insights into advanced
distillation techniques for medical applications.
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