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Abstract. Accurate and reliable brain tumor segmentation, particu-
larly when dealing with missing modalities, remains a critical challenge
in medical image analysis. Previous studies have not fully resolved the
challenges of tumor boundary segmentation insensitivity and feature
transfer in the absence of key imaging modalities. In this study, we
introduce MST-KDNet, aimed at addressing these critical issues. Our
model features Multi-Scale Transformer Knowledge Distillation to ef-
fectively capture attention weights at various resolutions, Dual-Mode
Logit Distillation to improve the transfer of knowledge, and a Global
Style Matching Module that integrates feature matching with adversar-
ial learning. Comprehensive experiments conducted on the BraTS and
FeTS 2024 datasets demonstrate that MST-KDNet surpasses current
leading methods in both Dice and HD95 scores, particularly in condi-
tions with substantial modality loss. Our approach shows exceptional
robustness and generalization potential, making it a promising candi-
date for real-world clinical applications. Our source code is available at
https://github.com/Quanato607/MST-KDNet.

Keywords: Missing Modalities - Knowledge Distillation - Style Match-
ing - Neuroglioma - Brain Tumor Segmentation - Multi-modality MRI.

1 Introduction

Brain tumor segmentation is a critical task in medical neuroimaging, playing a vi-
tal role in diagnosis, treatment planning, and prognosis assessment. Among brain
tumors, gliomas stand out as particularly aggressive, exhibiting complex biolog-
ical behaviors and significant heterogeneity, which complicate clinical treatment
[19]. Magnetic resonance imaging (MRI), utilizing multiple modalities, is the
preferred method for visualizing and segmenting brain tumors due to its ability
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to capture diverse and complementary information [27,20,3]. Each MRI modal-
ity contributes unique insights: T1 and T2 modalities are effective in identifying
angioedema in subacute strokes; T1Gd highlights vascular structures and the
blood-brain barrier; and FLAIR provides a broad overview of stroke lesion char-
acteristics. Together, these modalities complement one another, offering detailed
information about tumor size, location, and morphology [26].

Missing modalities, caused by scan corruption, imaging artifacts, and varying
machine settings, are a common challenge in clinical settings [22,11,6]. Further-
more, in clinical practice, the number of available modalities and their correct
labeling for algorithmic use is uncertain, limiting segmentation accuracy [15].
Several methods have been proposed to handle missing modalities, such as Ding
et al.’s [5] region-aware fusion module and Zhao et al.’s [25] modality-adaptive
feature interaction. Zhang et al. [23] and Dai et al. [4] introduced techniques
to reconstruct missing modalities by aggregating features from available ones.
Whereas, the absence of critical modalities often leads to performance degra-
dation [17]. To tackle this, Wang et al. [17] proposed a cross-modal knowledge
distillation framework to identify key modalities. In contrast, Liu et al. [10]
developed M3AE using self-distillation to handle missing-modality. Other ap-
proaches, such as Huo et al.’s [8] bi-directional distillation and Xing et al.’s
[21] contrastive distillation, have proved the efficacy of knowledge distillation in
improving model performance despite missing modalities. However, past meth-
ods remain inadequate in handling modality inconsistency and correlation due
to limited knowledge adaptability and the inability to align features between
modalities.

To address the difficulty of understanding the inter-modal correlation and
inconsistency in the model, this paper proposes MST-KDNet, which signifi-
cantly improves cross-modal semantic extraction, maintaining superior segmen-
tation accuracy and robust generalization capabilities across varying modality
combinations. The main contributions of this work are summarized as follows:
1) We propose the Multi-Scale Transformer Knowledge Distillation (MS-TKD),
which enhances segmentation performance by extracting attention weights and
features across different resolutions; 2) We present the Dual-Modal Logit Dis-
tillation (DMLD), which leverages Logit Alignment and Normalized Kullback-
Leibler Distillation to enhance knowledge adaptation and ensure robust learning
even in the absence of certain modalities; 3) We develop the Global Style Match-
ing Module (GSME) to combine feature matching with adversarial learning to
strengthen the model’s performance across missing modality scenarios.

2 Proposed Method

2.1 Baseline Network

The baseline network structure of the model is based on 3D convolution and
multi-scale Transformer architecture [7]. First, the input o € REXW*DxC gy
dergoes one layer of 3D convolution to extract the initial features and then
reduces the feature map size layer-by-layer by three layers of 3D convolutional
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Fig. 1. The overall framework of MST-KDNet. The teacher propagation processes all
available modalities, while the student propagation accommodates incomplete inputs.

downsampling with a step size of 2, to extract the rich spatial and semantic infor-
mation in the external encoder stage. After downsampling, the feature map size
is € RUI/B)x(W/8)x(D/8)x32C gn{ is converted to a 1D sequence. The volume
is divided into non-overlapping (P, P, P) chunks to obtain z, € ROV*(P*:320))
with a sequence length of N = w. These chunks are projected
through a linear layer into the K dimensional embedding space and enter the
Transformer processing. The Transformer architecture contains multiple Trans-
former blocks using the Multihead Self-Attention (MSA) mechanism. Each MSA
sublayer has n parallel self-attention heads, and the attention weight A is com-
puted by querying (q) and key (k) similarity with the following formula:

T

qk
A Softmax< N
where K}, = % serves as a scaling factor to keep the number of parameters consis-
tent across key dimensions. Here, v denotes the value mapping in the sequence z,
and W € RO*Er)xK denotes the trainable parameter weights of the multi-head
self-attention sublayer. At different resolution stages, multiple z; representations
are extracted, sized as W x K and reshaped as 3 >< % X Q x K tensor after
3 x 3 x 3 convolution and normalization. Thereafter, the feature maps are com-
bined with the feature maps of the corresponding Transformer blocks through
jump connections. The inverse convolution extends the size. Finally, the exter-
nal decoder extracts the deep semantic information through 3D convolution and
integrates the multi-scale jump-connected features, and up-sampling gradually
restores the spatial resolution.

) iSA(2) = A v; MSA(z) = [SA1(2z);...;SAL(2)] W, (1)

2.2 Multi-scale Transformer Knowledge Distillation

As illustrated in Fig. 1, we extract the attention weights A from each resolution
layer as a sequence for the Extreme Value Distillation (EVD) process. We cal-
culate the maximum, minimum, and mean values of these attention weights at
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each pixel position along the C dimension:
. . , 1 &
Amax = max(As,axis = 1); Apin = min(As, axis = 1); Amean = — E A (2)
n
i=1

These values are then used as weights to generate three sequences by multiplying
them with the corresponding attention weights:

EV, :Amax'A§E‘/2:Amin'A§E‘/3:Amean'A- (3)

For the complete modality teacher model and the student model with missing
modalities, we apply knowledge distillation using mean square error (MSE) loss.
Additionally, MSE is applied to each reshaped tensor, ensuring consistency be-
tween the models. The multiscale Transformer-based knowledge distillation loss
is defined as follows:

Lyis-tkp = aLryp(BEVY, EV™) 4+ BLyst
1 3 n ; 9 1 N ; ,
=0 3 (BVE - V) + A5 DGl - @)

=1 j=1 i=1 j=1

2.3 Dual-mode Logit Distillation

Logit Discrepancy Distillation. To enhance the student’s ability to mimic
the teacher model’s style, we apply MSE loss to align features from the com-
plete modality with those of the missing modality. The specific formula for this
calculation is as follows:

ﬁmseafv lm) = % zn: (l; - l;n>2 ) (5)

Jj=1

where [/ and I™ represent the logit outputs from the teacher and student models,
respectively, with N indicating the dimension of the logit vector.

Logit Standardization KL Distillation. Traditional knowledge distilla-
tion applies a global temperature factor to align the logit ranges of both student
and teacher networks. This rigid coupling limits the student’s ability to adapt,
especially when there is a significant disparity in model capacity, reducing the
student’s learning potential. To address this limitation, we introduce logit nor-
malization into the distillation process [14]. Specifically, the logits (1) are first
normalized using the Z-score normalization function before being passed through
the softmax function:

Z(l;7) = (J+11701j7)7;q(l) = softmax[Z(l;7)] where [¢€ {I/,1™}, (6)
where p represents the mean, o denotes the standard deviation, and 7 is the
temperature coefficient. The normalized logits are then passed into the KL di-
vergence loss function, defined as:

K

) = S g log ((1F)
G =3 at' s () @
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Logit Standardization KL Distillation removes the need for a globally shared
temperature, allowing for flexible adjustments, and preserves the core distri-
bution relationship between the teacher’s and student’s logits without rigidly
matching the teacher’s output magnitude. Thus, the Dual-Mode Logit Distilla-
tion loss function combines Logit Discrepancy loss and Logit Standardization
KL loss, expressed as:

£logit = AmseLmse + )\KD7—2£KL- (8)

2.4 Global Style Matching Module

The structural and stylistic variations inherent to different MRI modalities often
pose challenges for decoding networks, particularly when some modalities are
missing. To address this issue, our GSME integrates Mean Square Error MSE
loss with adversarial learning to mitigate these challenges. In GSME, we first
take the max-pooled feature output from the penultimate convolutional layer,
fenc, concatenate it with the output of the transformer block, f;, and feed the
combined features into the decoder. The decoder processes these features and
outputs fgec, while the fused features, fencgt, are simultaneously passed into a
feature discriminator D to compute the adversarial loss:

Eadv = IOg(l - D(fefnc&t)) =+ log(D(ferﬁc&t))v (9)

where fencet represents the input to the decoder. The decoder’s first convolu-
tional output, fqec, is further processed by reshaping the spatial dimensions H,
W, and D of fene, ft, and fqec into two-dimensional tensors Gepe, G, Gdec. These
tensors are then subjected to a feature fusion operation:

Ml = GencheC§ M2 = GencG?§ MS = GdecG?~ (1())

The fusion results in the feature sequence M € {M;, My, M3}, which is used to
compute the GSME loss, incorporating both adversarial and MSE losses:

0 3 n
Lasme = €Ladv + e ;; (Mi{j — MZZ)Q (11)

2.5 Total Loss

The total loss function utilized during training integrates four key components,
each contributing to different aspects of the model’s optimization:

Lioint = MLMS-TKD + A2Liogit + AsLasMmE + MLpice, (12)

where A1, A2, A3, and A4 are weighting coeflicients that balance the contributions
of each individual loss term to the overall objective.
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Fig. 2. Comparison of segmentation results under four missing-modality scenarios.
Color legend: WT = red + + green, TC = red + , ET = red.

3 Experiments

3.1 Dataset and Implementation

BraTs$S 2024 dataset [16] and FeTS 2024 dataset [12]. Both datasets offer
3D multimodal MR brain images accompanied by corresponding accurate labels.
The BraTS 2024 comprises 1,350 cases, and the FeTS 2024 comprises 1,250
cases, with each case including MR images in four modalities: T1, T2, T1Gd,
and FLAIR. The images are classified into three distinct regions: Enhancing
Tumor (ET) region, Core Tumor (CT) region, and Whole Tumor (WT) region.
We randomly divided the dataset into two parts for our analysis, using 80%
for training and the remaining 20% for testing. We applied data augmentation
techniques, such as random flips, rotations, and cropping and each MRI was
resized to dimensions of 160 x 192 x 128 to standardize the data.

Implementation details. All experiments were conducted on a Tesla V100
GPU using PyTorch 2.4.1 as the foundational framework. The batch size for
training was set to 1, and the model was trained for 250 epochs. Model param-
eters were optimized using the Adam optimization algorithm, with an initial
learning rate of 0.0001. The hyperparameters 8, and (2 were configured to 0.9
and 0.99, respectively, to ensure stable and efficient convergence.

3.2 Experiment Results

Comparative Experiments. As shown in Tables 1 and 2, we performed multi-
modal ablation experiments on the BraTS 2024 dataset. Input modes were ran-
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domly excluded to simulate various scenarios, resulting in unimodal, bimodal,
trimodal, and quaternary input, for a total of 16 combinations. Compared with
several state-of-the-art models, MST-KDNet achieved optimal or suboptimal re-
sults in key tumor regions (WT, TC, and ET), indicating superior voxel overlap
and spatial distance performance. Notably, MST-KDNet maintains robust per-
formance even under extreme conditions, such as when only one or two modalities
were available, showing strong robustness. MST-KDNet also performs impres-
sively on the FeTS 2024 dataset, as shown in Table 3. MST-KDNet consistently
outperforms the other methods in most cases of missing modal combinations.

Table 1. Comparison of Dice score for various state-of-the-art models (BraTS 2024).
Red represents the optimal value, and Blue represents the suboptimal value.
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77.272.9 73.5 84.7 79.8 75.1 85.7 79.3 85.8 86.4 86.5 86.1 86.9 80.0 86.8
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TC

RA-HVED [9]
RMBTS [2]
mmformer [24]
M2FTrans [13]
ACN [18]
SMUNet [1]
MST-KDNet

26.5 54.2 9.4 41.1 61.3 54.8 41.9 29.2 40.5 61.9 62.5 43.2 64.0 61.9 65.0
10.9 36.5 12.6 11.2 40.4 37.6 16.8 15.2 14.5 38.9 40.1 17.4 40.4 40.9 40.6
47.2 52.3 44.4 33.1 62.6 60.6 49.6 51.1 49.6 60.6 64.3 52.6 65.5 65.3 67.0
46.6 53.3 43.3 33.8 60.0 57.7 46.7 48.5 48.3 57.8 60.0 49.6 61.5 60.8 62.0
21.2 54.2 19.5 22.5 58.8 57.9 26.1 23.2 26.7 60.0 63.8 28.3 62.6 62.7 64.1
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47.1 54.2 44.6 34.0 62.6 60.0 47.5 49.4 49.3 60.2 62.7 50.4 64.5 63.4 65.0
18.0 55.2 16.9 19.6 59.8 59.6 22.2 19.2 22.4 60.8 65.1 23.9 64.0 64.3 65.9
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Ablation Study. As shown in Table 4, on the BraT$S 2024 dataset, exclud-
ing MS-TKD decreased Dice scores by 2.0% for WT, 5.1% for TC, and 5.6%
for ET, while increasing HD95, highlighting the importance of multiscale atten-
tional alignment. Removing GSME reduced Dice scores by 3.5% for WT, 3.4%
for TC, and 6.4% for ET, emphasizing the role of global style and texture com-
pensation. The absence of SLKD caused Dice score drops of 1.8% for WT, 3.4%
for TC, and 4.6% for ET, indicating the importance of flexible teacher-student
distribution matching. A similar pattern was observed in the FeTS 2024 dataset.
These results indicate that MS-TKD, GSME, and SLKD have their respective
and complementary roles, which significantly improve the model’s segmentation
accuracy and stability under missing mode conditions.
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Table 2. Comparison of HD95 score for various state-of-the-art models (BraT$S 2024).
Red represents the optimal value, and Blue represents the suboptimal value.

FLAIR O O O @ OO @ O e 06 06 0 0 O o
Tyoe T1 ©c o e 00 e e &6 OO e e O 6 6
P T1Gd O @€ O O e @€ O O O @ 6 O 0 o0 o &
T2 ® O O O e OO @ @ O O @ 0 o0 o

RA-HVED [9] [22.1 40.2 57.7 23.8 19.8 34.8 20.9 17.4 16.9 21.2 20.5 15.0 16.3 18.6 15.9|24.1

RMBTS [2] [39.1 63.6 57.7 59.4 36.1 50.1 41.7 33.1 37.4 47.8 34.8 33.2 35.3 34.1 34.0|42.5
mmformer [24]]19.5 52.0 40.7 18.2 18.8 34.5 13.9 16.8 13.1 15.5 13.4 12.9 12.2 16.8 11.8|20.7
WT |[M2FTrans [13]]43.8 51.8 47.0 47.3 42.4 44.5 43.0 42.6 42.1 41.9 41.3 41.3 40.7 40.8 40.5|43.4

ACN [18] 11.6 28.4 29.6 11.8 13.5 20.4 11.4 15.6 10.3 13.2 11.7 10.2 11.5 15.1 10.3|15.0
SMUNet [1] [9.1 13.3 5.9 12.2 59 7.6 11.2 54 7.7 51 52 53 49 4.8 80|74
MST-KDNet | 8.1 11.111.0 6.7 5.3 9.2 6.1 52 46 6.2 51 50 47 4.7 53|6.6

RA-HVED [9] [25.3 30.4 57.1 22.5 15.8 26.8 20.9 23.1 19.7 15.9 14.4 21.6 13.3 16.2 12.5(22.4

RMBTS [2] [24.8 23.1 47.1 24.1 19.8 25.8 23.7 21.9 19.1 18.5 16.3 20.0 15.6 14.0 13.7|21.8
mmformer [24](27.7 62.1 39.1 24.3 25.6 38.7 19.7 24.1 19.3 20.5 17.3 18.7 15.4 22.1 14.7|26.0
TC |M2FTrans [13](79.4 79.2 82.6 82.4 76.3 76.3 79.7 79.2 79.5 78.5 77.5 78.3 77.0 77.0 76.3|78.6

ACN [18] 15.7 9.2 19.318.2 6.4 8.5 17.317.015.7 6.6 6.2 17.6 58 6.2 5.8|11.7
SMUNet [1] [14.0 6.3 14.0 13.4 4.4 5.0 12.212.1 12.0 4.8 4.3 11.9 4.2 4.5 4.6|8.5
MST-KDNet [12.0 4.9 11.2 12.1 3.7 4.3 10.510.8 11.0 3.6 3.4 10.0 3.7 3.3 4.0 7.2

RA-HVED |[9] [12.9 25.0 47.0 15.2 14.9 23.7 13.2 10.9 10.8 14.0 14.2 11.0 12.8 15.4 12.2{16.9

RMBTS [2] [23.8 21.9 44.8 23.7 19.2 24.2 22.4 21.9 19.5 17.2 15.1 19.5 15.2 13.5 13.3|21.0
mmformer [24]]26.4 59.8 37.6 23.2 24.0 36.7 18.6 22.2 18.4 18.3 16.4 17.7 14.5 20.4 14.0|24.5
ET |[M2FTrans [13]|23.4 31.5 21.5 24.1 16.1 16.2 16.2 19.4 20.9 16.8 13.3 18.5 15.3 14.2 13.9|18.8

ACN [18] 14.7 8.0 19.318.1 6.1 7.6 16.6 16.414.9 5.9 5.3 17.2 5.2 53 5.2 |11.1
SMUNet [1] [13.5 5.4 14.0 13.0 3.9 4.3 11.8 11.5 12.0 4.1 3.7 11.3 3.7 4.0 4.0 | 8.0
MST-KDNet [11.7 4.5 10.511.9 3.3 3.8 9.8 10.310.6 3.2 3.0 9.8 3.3 29 3.0|6.8

Table 3. Comparison of average Dice and HD95 scores for various state-of-the-art

models (FeTS 2024). GitHub.
Method Average Dice Score (%) Average HD95 Score (mm)
WT TC ET WT TC ET
RA-HVED [9] 69.7 60.0 50.9 22.0 20.6 19.8
RMBTS 2] 75.2 60.4 65.6 8.6 25.2 10.1
mmformer [24 68.9 54.6 48.6 26.7 27.5 34.0
M2FTrans [13 82.0 74.3 63.0 26.5 14.8 20.8
ACN |[18] 84.9 78.8 67.3 8.5 8.4 16.5
SMUNet [1] 87.5 82.9 72.1 6.4 6.3 5.5
MST-KDNet 88.4 84.3 73.4 5.9 5.7 5.4

4 Conclusion

In this study, we propose MST-KDNet, a novel framework for incomplete multi-
modality brain tumor segmentation. MST-KDNet effectively captures cross-
modality correlations and significantly enhances tumor region representations
for robust segmentation, even with significant missing modalities. The frame-
work employs global and local feature refinement mechanisms to align available
modalities, effectively compensating for the missing ones and improving feature
distribution. Extensive experiments on the BraTS and FeTS 2024 benchmarks
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Table 4. Comparison of average Dice and HD95 scores for ablation studys.

BraT$S 2024 [16]

Average Dice Score (%) Average HD95 Score (mm)
Method WT TC ET WT TC ET

w/o MS-TKD 79.8 54.4 54.2 7.5 8.3 7.8
w/o GSME 78.3 55.1 53.4 9.6 9.7 9.5
w/o SLKD 80.0 56.1 55.2 8.1 8.7 8.0

MST-KDNet 81.8 59.5 59.8 6.6 7.2 6.8

FeTS 2024 [12]

w/o MS-TKD 87.0 81.8 72.6 7.3 6.8 5.5
w/o GSME 86.1 82.9 72.6 7.3 6.6 5.9
w/o SLKD 87.5 82.1 72.9 6.5 6.6 5.8

MST-KDNet 88.2 84.3 73.4 5.9 5.7 5.4

demonstrate MST-KDNet’s superiority and robustness, consistently outperform-
ing state-of-the-art methods, especially in incomplete modality settings.
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