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Abstract. Autoregressive Initial Bits is a framework that integrates
sub-image autoregression and latent variable modeling, demonstrating
its advantages in lossless medical image compression. However, in exist-
ing methods, the image segmentation process leads to an even distribu-
tion of latent variable information across each sub-image, which in turn
causes posterior collapse and inefficient utilization of latent variables. To
deal with these issues, we propose a prediction-based end-to-end lossless
medical image compression method named LVPNet, leveraging global
latent variables to predict pixel values and encoding predicted prob-
abilities for lossless compression. Specifically, we introduce the Global
Multi-scale Sensing Module (GMSM), which extracts compact and in-
formative latent representations from the entire image, effectively captur-
ing spatial dependencies within the latent space. Furthermore, to mit-
igate the information loss introduced during quantization, we propose
the Quantization Compensation Module (QCM), which learns the dis-
tribution of quantization errors and refines the quantized features to
compensate for quantization loss. Extensive experiments on challenging
benchmarks demonstrate that our method achieves superior compres-
sion efficiency compared to state-of-the-art lossless image compression
approaches, while maintaining competitive inference speed. The code is
at https://github.com/scy-Jackel/LVPNet.
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1 Introduction

In medical imaging applications, the handling, transmission, and backup of data
often necessitate the storage of lossless images, resulting in substantial storage
demands[1-3|. Lossless image compression techniques play a crucial role in miti-
gating storage costs by leveraging inherent image correlations to reduce file sizes
while maintaining the integrity of the original content. Shannon’s source coding
theorem [4] defines the lower bound for code length based on image entropy,
which is determined by the image’s inherent distribution. Thus, reducing redun-
dant information is a fundamental strategy for image compression. [5] introduce
the use of the LZ77 algorithm [6] and Huffman coding [7] to eliminate redun-
dant information. Later, reference [8] propose the discrete wavelet transform as
an effective method for capturing multi-scale image features.

With the advancement of deep learning, various models [9-11] have been
widely adopted for lossless image compression. Representative methods include
autoregressive models (ARMs) [12-14], variational autoencoders (VAEs) [15-20],
normalizing flows (NFs) [21-24|, prediction model|25-28|, as well as diffusion
models [29, 30]. These methods require balancing compression performance with
inference speed. For example, ARMs and diffusion models offer impressive com-
pression performance, but come with the trade-off of significantly longer infer-
ence times [31-33]. Moreover, image compression encompasses both dataset-level
and single-image compression. However, existing lossless compression methods
are typically tailored for specific data types, facing significant challenges in ad-
dressing both application scenarios simultaneously. For instance, while NFs excel
in dataset compression, they exhibit relatively weaker performance in single-
image compression. Additionally, as the size of the autoregressive prior increases
in ARMs, the risk of posterior collapse along the sub-image sequence becomes
more pronounced [34-36|, which negatively affects compression performance.

To deal with these challenges, we propose LVPNet, a latent-variable-based
prediction-driven end-to-end lossless compression framework specially designed
for medical images, suitable for both datasets and single images. By extract-
ing effective low-dimensional latent representations from the entire image, our
approach efficiently captures spatial dependencies within the latent space and
predicts pixel values in this domain. Specially, we introduce two key components:
First, Global Multi-scale Sensing Module (GMSM) captures a variety of multi-
scale features during downsampling and encodes relevant information into the
latent variables; Then Quantization Compensation Module (QCM) learns the
distribution of quantization errors to compensate for the loss and enhance pixel
prediction accuracy. Our contributions are summarized as follows:

e We propose latent-variable-based prediction-driven end-to-end framework
for lossless compression of medical images, applicable to both dataset and
single-image compression tasks.

e We propose the GMSM and QCM modules to extract more comprehensive
information from multi-level features, which helps mitigate the issue of pos-
terior collapse and reduces the information loss from quantization.
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Fig. 1: Overview of the proposed framework. The framework consists of five dis-
tinct modules: a global multi-level Sensing module, quantization, entropy coding,
a quantization compensation module, and a probability prediction module.
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(a) Architecture of GMSM. (b) Architecture of QCM.

Fig. 2: The structure of GMSM and QCM. (a) r is the pre-defined sampling rate.
(b) We employ N residual connections and a global connection to propagate
features from various layers to the final output.

e The proposed model exhibits exceptional inference speed and achieves strong
compression performance across benchmark datasets for medical imaging.

2 Methodology

2.1 Overview of LVPNet

The proposed framework is shown in Fig. 1. The input image z is first processed
by the global multi-level perception module G to generate the compressed coeffi-
cients y = G(z), with a sampling ratio of r. y is quantized to map it to the integer
domain, producing the latent variable z = Q(y), which is then entropy encoded
into a bitstream for storage. Afterward, z undergoes dequantization to produce
9 = Deq(z), and the quantization loss is compensated by the QCM. The com-
pensated features are upsampled and reconstructed, after which the pixel values
for the entire image are predicted using the probability prediction module. The
process from z to predicted probabilities is denoted as pg(z|z), where 6 represents
the model parameters. Finally, the predicted probabilities are entropy encoded
into a bitstream for storage. LVPNet only needs to store the entropy-encoded
z, the bitstream of predicted probabilities pp(z|z), and the model parameters 6.
Since 6 has a fixed size and the bitstream of z remains relatively stable due to
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the fixed sampling ratio r, LVPNet focuses on reducing the size of the entropy-
encoded bitstream for py(z|z). During inference, the latent variable z is decoded,
and the predicted pixel values are generated using pg(z|z). By comparing these
predictions with the entropy-decoded probabilities corresponding to the ground
truth pixel values, the image can be losslessly reconstructed.

2.2 Global Multi-scale Sensing Module

Convolutional neural networks hierarchically extract features, where layers proxi-
mal to the input capture low-level features such as edges and basic textures, while
deeper layers encode abstract and semantic features. Guided by these principles,
we propose the GMSM method, as illustrated in Figure 1. The framework oper-
ates in two stages. In the first stage, 2 x 2 convolutional layers are employed to
extract features. In the second stage, features across all hierarchical levels are
aggregated and sampled using 1 x 1 convolutional layers, instead of exclusively
relying on low-level or high-level features for sampling.

In GMSM, to aggregate multi-level features for sampling, we draw inspiration
from ResNet [37], employing skip connections to propagate features from various
layers to the final stage. Additionally, pooling layers are incorporated to ensure
dimensionality alignment. The corresponding formula is expressed as follows:

fr41 = Conv(f;) + Pool( fi) (1)

where f; and f;11 denote the sampling features of the ¢-th and (¢ + 1)-th layers,
respectively. When transforming the current feature f; € RE*#*W into the
next-layer feature f; 11 € R4ngx%’ the feature volume remains consistent.
Downsampling is performed through the 1 x 1 convolution layer in the second
stage, which facilitates adaptation to various sampling ratios.

2.3 Quantization and Entropy Coding

Quantization The downsampled values y are quantized to produce the discrete
latent variables z, and the inverse operation is applied during dequantization to
recover the reconstructed coeflicient 3:

z = Q(y) = Ly/Qstepjvg = DeQ(z) =zX Qstep (2)

where Qstep denotes the quantization step size. Due to quantization causing the
gradients to become zero, preventing effective backpropagation to the GMSM,
we store the gradient prior to the floor operation during forward propagation
and use this stored gradient for backpropagation updates. The gradient update
formula for the loss function £ in the quantization module is as follows:

oL _oc 9: or 1 5
3y_8z 8y~32 Qstep
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Fig.3: The feature map visualization of the GMSM and QCM modules. (a)
Original image; (b) f1 in Eq. 1; (¢) f2 in Eq. 1; (d) f3 in Eq. 1; (e) Output of
GMSM y; (f) Output of QCM; (g) Residual between y and QCM output.

Entropy Coding We apply entropy encoding to both the latent variable z and
the predicted probabilities of the pixel values in py(i|z). A well-trained model
typically results in highly sparse residual latent variables. To encode these sparse
residuals, we use Huffman encoding [38], while the predicted probabilities are
encoded using arithmetic coding [39].

2.4 Quantization Compensation Module

The quantization compensation module helps mitigate quantization loss and
enhance the predicted probabilities. We employ a basic CNN architecture for
the compensation module, as illustrated in Figure 1. This network incorporates
a global shortcut and multiple residual blocks, which accelerate training. During
quantization, a floor operation is applied, causing the dequantized measurement
7 to be slightly smaller than the original measurement y. To address this, we
use the relu(-) activation function in the final layer of the compensation module,
ensuring that the compensation value remains non-negative.

2.5 Loss Function
We define the loss function for lossless compression of datasets as follows:

L(0.G,Q) = ~Eonpuu.. [logs (po (2 | Q(G())))] 4)
N H® wk

== Y 0@l (logs o (3 | QGEMY)) )

k=1 i=1 j=1

where N denote the number of images in the dataset, with W) and H®)
representing the width and height of the k-th image. The true pixel value at the



6 Chenyue Song et al.

Table 1: Comparison of dataset compression performance in BPP. Group 1:
Traditional methods, Group 2: Methods based on machine learning.

Method Chest X-ray CIFAR10 ImageNet32 | ImageNet64
PNG [5] 3.07 5.89 6.39 5.74
FLIF [40] 2.87 4.19 4.52 4.54
JPEG-XL [41] 2.93 5.74 6.39 5.89
L3C [31] 2.89 - 476 1.42
IDF [22] 2.78 3.34 4.18 3.90
Hilloc [18] 3.02 4.56 4.20 3.90
SHVC [32] 2.83 3.16 3.98 3.68
iVPF [24] 2.80 3.20 4.03 3.75
LBB [21] 2.76 3.12 3.88 3.70
iFlow [23] 2.77 3.12 3.87 3.70
BCM-Net [28§] 2.87 3.26 4.06 4.19
HMEM [20] 2.79 3.19 3.89 3.80
ArIB-BPS [14] 2.74 3.06 3.91 3.63

LVPNet (ours) 2.65+0.03 3.024+0.02 3.76+0.04 3.514+0.03

i-th row and j-th column of the k-th image is one-hot encoded as :z:ff) Paata
denotes the true data distribution, and ¢ is the Kronecker delta function. The
loss function quantifies the storage cost associated with storing the predicted

probabilities, and for lossless compression of a single image it’s defined as:

H W
£0.G,Q) = =3 8(wi;. 1) - (logy po (5 | Q(G(2))) (6)

i=1 j=1

3 Experiments

3.1 Training Details

We evaluate the performance of our method for both dataset-level and single-
image lossless compression on Chest X-ray[42], CIFAR10, ImageNet32, and Im-
ageNet64. Of these, Chest X-ray is a medical image dataset, while the others are
natural image datasets. We use bits per pixel (BPP) as the evaluation metric,
where lower values indicate better performance.

We use the Adam optimizer [43] with an initial learning rate of 0.0001 and
step decay for scheduling. The GMSM sampling rate r is set to 0.15, and the
quantization step size Qs¢ep is 0.01. For dataset compression, the QCM consists of
24 residual blocks, while for single image compression, it contains only 3 residual
blocks. All experiments are conducted on an NVIDIA GeForce RTX 3060.

3.2 Visualization of Feature Maps

In this section, we visualize the feature maps of the GMSM and QCM modules,
as shown in Figure 3. From Figures 3b to 3e, we observe that, during GMSM’s



LVPNet 7

Table 2: Comparison of single image compression performance in BPP. 2: These
values are derived by summing the dataset’s compression performance and the
initial bit count.

Method Chest X-ray CIFAR10 ImageNet32 | ImageNet64
PNG [5] 3.07 5.89 6.39 5.74
FLIF [40] 2.87 4.19 4.52 4.54
JPEG-XL [41] 2.93 5.74 6.39 5.89
L3C [31] 2.89 - 4.76 4.42
IDF [22] 2.78 3.34 4.18 3.90
iVPF [24] 5.834 9.204 - -
LBB [21] 37.534 42.984 49.844 41.704
iFlow [23] 29.894 37.40° 38.274 38.124
BCM-Net [28] 3.21 4.03 4.10 4.18
HMEM |[20] 3.15 3.97 4.04 4.13
ArIB-BPS [14] 2.76 3.07 3.92 3.64
LVPNet (ours) 2.72+0.02 | 3.1040.02 | 3.82+0.03 | 3.5740.03

Table 3: Comparison of inference times.

Compression Performance(BPP)/||Inference Time(ms/sample)]
Dataset Method dataset single encode decode
LBB [21] 2.762 37.520% 643.95 631.19
Chest Xoray| . IFlov [23] 2.768 29.8944 451.87 512.48
ArIB-BPS [14] 2.741 2.763 197.24 203.50
LVPNet (ours) 2.650 2.719 143.63 184.06
LBB [21] 3.118 49.835 64.94 64.94
iFlow [23] 3.118 37.398 19.38 47.56
CIFARIO ArIB-BPS [14] 3.057 3.070 14.93 14.93
LVPNet (ours) 3.024 3.099 16.44 20.28
LBB [21] 3.875 49.835 194.14 194.14
TmageNet32 iFlow [23] 3.873 38.273 74.84 119.30
ArIB-BPS [14]|  3.911 3.918 52.96 52.96
LVPNet (ours) 3.758 3.822 39.73 48.17

downsampling process, the earlier layers effectively capture the skeletal and or-
gan contours in the X-ray image, while the later layers extract more abstract
features. This observation suggests that GMSM progressively extracts key infor-
mation in a coarse-to-fine manner. As shown in Figure 3f, the output from the
QCM module closely resembles the feature map of y in Figure 3e. Additionally,
the residual map in Figure 3g appears generally darker, indicating the QCM
module’s effectiveness in compensating for quantization loss.

3.3 Compression Performance

We compare our method with traditional approaches and state-of-the-art deep
learning methods. We present the detailed results of the experiment in Table
1. Our method achieves superior compression performance, particularly in com-
pressing medical image datasets, while also maintaining competitive performance
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Table 4: Ablation study of the effectiveness of GMSM and QCM.

Compression Performance(BPP)] |Inference Time(ms/sample)]
Sampling QCM dataset single encode decode
CNN 2.833 2.906 133.11 166.89
CNN v 2.757 2.859 132.15 184.12
GMSM 2.732 2.841 143.52 167.03
GMSM v 2.650 2.719 143.63 184.06
40 40
3.8 \// 38
—— Chest X-ray —— Chest X-ray
3.6 — CIFAR10 361 —— CIFAR10
Q_3_4. ——— Imagenet32 Q_3>4 ~——— Imagenet32
Q. Q
Q32+ \/’// Q32+ \/
3.0 3.0
28 v 2.8 \/
26 T T T T T T T T T 26 T T T T T T T T T
011 012 013 014 015 0.16 017 0.18 0.19 011 012 013 014 015 0.16 017 0.18 0.19
sampling rate sampling rate
(a) Dataset compression (b) Single image compression

Fig. 4: Ablation study for different sampling rates r.

on natural image datasets. ArIB-BPS shows limited compression capability due
to issues like posterior collapse and inefficient use of latent variables, highlighting
GMSM’s effectiveness in leveraging global latent variables for prediction.

To further validate the effectiveness of our method, we evaluate its perfor-
mance on the lossless compression of individual images, with results presented
in Table 2. The experimental findings indicate that our method achieves high
compression efficiency in single-image compression tasks. Compared to state-of-
the-art lossless compression methods, it consistently outperforms existing ap-
proaches across multiple datasets. These results further demonstrate the appli-
cability and robustness of our method, proving its suitability for both large-scale
dataset compression and single-image lossless compression.

In addition, we perform a comprehensive comparison between our method
and state-of-the-art approaches, which demonstrate strong performance in both
large-scale image datasets and single-image compression tasks. As shown in Ta-
ble 3, LVPNet achieves outstanding performance across various datasets while
achieving an inference speed on par with the fastest existing approach, indicating
a better balance between compression efficiency and inference speed.

3.4 Ablation Studies

We perform three ablation experiments on the Chest X-ray dataset to demon-
strate the efficacy of our latent-variable-based, prediction-driven model for med-
ical image lossless compression and the effectiveness of discrete sampling. We
assess the impact of autoregression across different dimensions by training and
evaluating three additional models: one in which the global multi-level percep-
tion module is replaced by a Convolutional Neural Network (CNN), one in which
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the quantization compensation network is removed, and one where both modifi-
cations are applied. As shown in the experimental results in Table 4, our model
achieves superior compression performance while maintaining comparable infer-
ence time. Additionally, we evaluate the effectiveness of our customized sampling
rate strategy. As shown in Figure 4, this sampling rate provides better compres-
sion performance, striking a favorable balance between latent variable storage
overhead and compression prediction accuracy.

4 Conclusion

We propose a novel method for lossless medical image compression, LVPNet.
The proposed GMSM module allows us to make full use of latent variables, ef-
fectively modeling the spatial dependencies within the latent space. In addition,
we introduce a quantization compensation module, which corrects quantized fea-
tures by modeling the distribution of quantization errors, thereby mitigating the
effects of quantization loss. Experimental results demonstrate that, compared to
the current state-of-the-art methods in lossless image compression, our method
achieves superior compression performance with comparable inference time.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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