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Abstract. 3D face reconstruction methods exhibit significant limita-
tions when applied to pathological cases such as facial paralysis, due to
inherent challenges including asymmetric motion and non-linear muscle
dynamics. To address these gaps, we propose SFPFR, a self-supervised
framework for facial paralysis 3D face reconstruction leveraging 1-3 view-
points. We first propose a self-supervised learning paradigm integrat-
ing reconstruction loss, multi-view consistency loss, and a Mamba-based
temporal loss to reconstruct 3D face without ground-truth; then, a par-
titioned dynamic fusion module that adaptively weights multi-view fea-
tures ensuring precise geometric reconstruction and pathological detail
preservation; last, we propose FPD-100, the first multi-view video dataset
for facial paralysis, comprising 30,000 frames from 100 patients of 3 views.
Extensive experiments validate SFPFR’s superiority, achieving state-of-
the-art PSNR (27.74) and FID (37.13). It enables clinical applications in
severity assessment, rehabilitation monitoring, and treatment planning,
while the dataset and code will be open-sourced to catalyze research in
pathological facial analysis.
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1 Introduction

Facial paralysis is the loss or weakening of facial muscle function, causing asym-
metric expressions. Assessment is crucial for diagnosis, treatment, and rehabil-
itation, helping physicians determine the type and severity of facial paralysis.
Currently, assessments rely on subjective judgment using rating scales like the
House-Brackmann scale, which is time-consuming and labor-intensive. 3D face
reconstruction, which generates 3D facial models from 2D images, shows great
promise in medical diagnostics and virtual reality. However, using professional
3D scanning equipment for facial paralysis patients faces challenges, including
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high costs, lengthy scanning times, and the need for patient cooperation. Re-
cently, 3D face reconstruction methods based on monocular 2D images have been
explored in clinical assessments of facial paralysis [1], with notable progress in
reconstructing identity features and basic facial geometry.

However, facial reconstruction specifically for facial paralysis still faces three
core challenges. Challenge 1: Pathological Facial Asymmetry and Motion Distor-
tion. Most mainstream 3D face reconstruction methods [2,3] use traditional 3D
deformable face models (3DMM [4]) and focus on estimating parameters from
models like BFM [5], FaceWarehouse [6], or FLAME [7]. These methods rely
on linear combinations of facial shapes (e.g., BlendShapes [8]) to represent ex-
pression changes, which fails to capture the nonlinear muscle dynamics in facial
paralysis patients. As a result, they struggle to reconstruct facial asymmetry and
abnormal muscle movements. While approaches like Smirk [9] attempt to address
asymmetry using balanced loss functions and neural rendering, they struggle to
capture the subtle details of facial paralysis, resulting in poor reconstruction
quality and an incomplete representation of the affected facial movements. Our
self-supervised framework integrates the proposed losses and temporal features
for accurate asymmetric reconstruction. Challenge 2: Lack of Facial Paralysis
Motion Images and 3D Ground Truth Data. Privacy concerns and data collec-
tion difficulties lead to a severe shortage of authentic 2D and 3D facial paralysis
data, hindering the training of existing reconstruction methods. To address this
critical gap, we introduce the FPD-100 dataset, providing essential pathological
motion data. Although self-supervised frameworks using perceptual or differ-
entiable rendering loss [9–12] have been developed, they are trained on healthy
population data and struggle to generalize to facial paralysis, particularly in han-
dling asymmetry and pathological details. This underscores the need for models
tailored for facial paralysis reconstruction. Challenge 3: Insufficient View Com-
patibility. Most algorithms are restricted by fixed modes, making it difficult to
handle varying input images (single or multi-view). Single-view methods fail to
capture the multidimensional indicators needed for facial paralysis assessment,
while multi-view algorithms [13] struggle with single-view inputs. Our parti-
tioned dynamic fusion module handles any number of input views adaptively.

To address these three challenges, we propose SFPFR, a framework achieving
high-fidelity facial reconstruction of facial paralysis patients from a few viewpoint
images. Our contributions are summarized as follows:

– A self-supervised framework that integrates reconstruction loss, multi-view
consistency loss, and temporal action feature capture module to reconstruct
asymmetric facial paralysis models without ground truth data.

– A large-scale multi-view video dataset (FPD-100) containing 30,000 frames
from 100 facial paralysis patients performing standardized facial movements,
captured simultaneously from three calibrated views.

– A partitioned dynamic fusion module that adaptively weights multi-view
features, enabling precise geometric reconstruction and pathological detail
preservation.



SFPFR: Self-supervised Facial Paralysis Face Reconstruction 3

Fig. 1. Our proposed SFPFR Architecture. Stage 1 reconstructs and fuses views of the
same person from different perspectives. Stage 2 conducts temporal optimization using
multiple video frames of the same individual. This model can handle both single-view
and multi-view inputs. For single-view input, the Dynamic Fusion module is inactive.

2 Method

As shown in Figure 1, our method processes single-view and multi-view facial
images of facial paralysis using a two-stage training system. The first stage (Sec-
tion 2.1) involves viewpoint reconstruction and image rendering, while the sec-
ond stage (Section 2.2) employs the temporal action feature capture module to
further capture the unique temporal facial movement characteristics of facial
paralysis patients.

2.1 Stage 1 of SFPFR

3D Pre-reconstruction Module As shown in Figure 1, the facial image
(single-view Isg or multi-view Ii, i ∈ {0, 1, 2}) is processed through the 3D
pre-reconstruction module to generate a base facial model consisting of 5023
vertices (Ssg or Si(i ∈ {0, 1, 2})). The process begins by applying the FLAME
algorithm [7] to extract facial parameters (focusing on key parameters related to
eyelids, lower face and jaw rotation). Subsequently, an Encoder (E, comprising
three MobileNetV3 networks [14]) is employed to predict expression parameters
φ, shape parameters α, and global transformation parameters θ through re-
gression (as shown in Equation 1). Finally, according to Equation 2, a Decoder
(R, constructed with multiple deconvolution layers) utilizes these parameters
(θ, α, φ) to generate the basic 3D facial model S.

θ = Eθ (Ii) , α = Eα (Ii) , φ = Eφ (Ii) (1)
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S = R(α, β, φ) (2)

Partitioned Dynamic Fusion Module and View Mapping Module We
propose a viewpoint processing strategy to accommodate varying numbers of
input facial images, enabling three-viewpoint rendering (left, center, right) from
both single-view and multi-view inputs.

(1) Partitioned Dynamic Fusion Module(PDFM) The 3D pre-reconstruction
module generates three viewpoint facial models Si(i ∈ {0, 1, 2}, Si ∈ R5023).
Frontal viewpoints excel at reconstructing eye areas but cannot effectively cap-
ture cheek asymmetry, which is better expressed by lateral models. We developed
the PDFM to address this issue. After aligning the three viewpoint models, we
implemented a dynamic weight redistribution factor w(x) that enables weighted
fusion from different directions.

w(x) =

{
1− x−xmin

xmid−xmin
, x ∈ [xmin, xmid)

x−xmid
xmax −xmid

, x ∈ [xmid , xmax]
(3)

In the facial coordinate system, xmin represents the leftmost point on the x-axis,
xmid denotes the central position of the x-axis, and xmax indicates the rightmost
point.The fusion model S at the point S(x, y, z) is calculated as follows:

S(x, y, z) =

{
w(x)S0(x, y, z) + (1− w(x))S1(x, y, z), x ∈ [xmin, xmid)
w(x)S2(x, y, z) + (1− w(x))S1(x, y, z), x ∈ [xmid, xmax]

(4)

where w(x)is the weight function, S1 represents the front view, S0 represents
the left view, and S2 represents the right view. This paper introduces dynamic
weights in the PDFM, using a spatially varying weight function to adaptively
fuse three view models, determining the priority of the asymmetric side view
of the facial paralysis cheek while maintaining the frontal accuracy of the eye
region.

(2) View Mapping Module (VMM) Single-view facial reconstruction often suf-
fers from geometric distortions, particularly around the mouth area, leading to
inaccuracies in the model. To address this, our VMM applies multi-view consis-
tency constraints to single-view inputs. By using rotation matrices, it generates
frontal, left, and right views of the 3D model, which are then processed through
a rendering module. This approach ensures consistent and accurate shape recon-
struction during optimization, even when only a single-view input is available,
enhancing the model’s overall quality. Thus, the multi-view consistency loss also
enforces geometric alignment across different rendered views to ensure the accu-
rate reconstruction of asymmetric features, such as the mouth deviation in facial
paralysis.

Render Module Unlike traditional self-supervision paradigms, we adopt an
analysis-by-neural-synthesis-based self-supervision mechanism [9] to synthesize
reconstruction facial images from input viewpoints. This module adopts a U-Net
architecture design, with the goal of performing three-dimensional rendering re-
construction on the original input image Ii. We randomly sample facial regions,
retaining only about 5% of the pixels as key features for training to guide recon-
struction, encouraging the network to rely more on the model S for rendering
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and reconstruction, thereby enhancing the accuracy of the geometric structure.

Ii
′ = U (Si ⊕M (Ii)) (5)

Where ⊕ stands for connection, M represents the masking operation and I ′i de-
notes the reconstructed facial image, which will be used in the reconstruction loss
to optimize the model’s geometric shape. Additionally, the parameter-separation
optimization strategy updates only the parameters of the expression encoder Eψ
in Equation 1, by applying augmentation through expression modification(as
referenced in [9]). The action transformation loss further ensures the stability
and effectiveness of the reconstruction process, enhancing the generalization of
facial action reconstruction. Notably, the action transformation loss is the same
as the multi-view loss applied to the image after expression change, as shown in
Equation 6.

Multi-view loss We introduced a multi-view consistency loss Lmulti-view
(Equation 6).This constraint enhances reconstruction precision from different
views, effectively capturing facial asymmetry and subtle muscle movements in
facial paralysis patients, and resolving the issue of asymmetry when reconstruct-
ing the faces of patients with facial paralysis.

Lmulti-view =
1

M

∑
j ̸=k

||Îj − Îk||22 (6)

Where Îj refers to the rendered image from the j-th viewpoint, and M denotes
the number of rendered image pairs.

Reconstruction Loss The VGG loss [15] serves a similar purpose as the
photometric loss but accelerates convergence during the early stages of training.
To suppress unrealistic expressions and ensure more natural results, we also
applied L2 regularization to the expression parameters ψ. Consequently, the final
image reconstruction loss combines perceptual loss and expression regularization,
as follows:

Lreconstruction = Lvgg + λLreg =
∑
l

|Γl (I ′)− Γl (I) |1 + λ|ψ|22 (7)

where Γ (·) represents the VGG perceptual encoder. λ is the hyperparameter used
to balance the perceptual loss and regularization terms, and in this experiment,
it is set to 0.35.

2.2 Stage 2 of SFPFR: Temporal Action Feature Capture Module
and Temporal loss

To capture specific action features (e.g., grimaces) and improve the quality
of facial paralysis movements in reconstructed images, we designed a Mamba-
based [16] temporal action feature capture module that retains non-smooth mo-
tion transitions (e.g., muscle spasms) while ensuring consistency in smoother
movements, simulating the irregular muscle behavior of facial nerve paralysis.
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We also introduced a temporal loss to address feature drift during training. This
mechanism maps the reconstruction facial image sequence X = {x1, x2, . . . , xt}
through conv1D projection to a high-dimensional feature space, forming a fea-
ture sequence Ft that is subsequently input into a state space model for temporal
modeling. We employ temporal loss to constrain the smoothness and consistency
of the sequence along the temporal dimension, ensuring natural and coherent ex-
pression changes. Additionally, we implement dynamic weighting to accommo-
date sudden movements and non-smooth actions characteristic of facial paralysis
patients.

Ltemporal =
1

n− 1

n−1∑
t=1

∥Mamba (Ft)−Mamba (Ft+1)∥22 ∗ wt (8)

Where wt = exp(−α ∥Mamba (Ft)−Mamba (Ft+1)∥2, and the weight is adjusted
based on the feature difference between adjacent frames. For changes with larger
magnitude, wt becomes smaller, allowing for non-smooth transitions. Here, α is
a hyperparameter controlling the sensitivity of weight changes.

In summary, the total loss used in SFPFR is composed of the formulas (6, 7,
8). Where ν,υ,ρ represent loss weight parameters.

Ltotal = νLmulti-view + υLrenconstruction + ρLtemporal (9)

3 Experiments and Results

3.1 Datasets and Assessment Indicators

We evaluated our method using the FPD-100 dataset, which we constructed from
30,000 facial images of 100 facial paralysis patients captured from three view-
points. From this dataset, 2,000 images from 10 independent subjects—distinct
from those in the training set and covering diverse severity levels of facial paraly-
sis with one frame extracted per second—were reserved as the test set. Addition-
ally, we employed the Facescape [17] dataset for further validation. Performance
was assessed using PSNR, SSIM [18], and FID [19] metrics, as well as vertex
error to evaluate 3D reconstruction accuracy. This study was ethically approved
under reference number 2024DZMEC-466-01.

3.2 Implementation Details

We implemented our method in the PyTorch framework using 4 NVIDIA RTX
A10 GPUs. We used a batch size of 12, with loss weights ν = 0.4, υ = 0.4, ρ = 0.2
applied during training. In the core phase, we trained SFPFR (Ours) for 250,000
iterations with a learning rate of 1e-3 and cosine annealing with restart at each
epoch.
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3.3 Results

Quantitative Results Quantitative comparisons with state-of-the-art methods
(Smirk [9], Deep3DFace [20] and 3DFFA-v3 [21], and MVF-Net [13]) confirm SF-
PFR’s superior performance. As shown in Table 1, on the FPD-100 dataset, our
method achieved the highest PSNR (27.74) and FID (37.13) with competitive
SSIM (0.89), demonstrating unique advantages in reconstructing pathological
features. On the FaceScape dataset, our approach significantly outperformed
baseline methods with 46.98% of vertices having errors <2mm for single-view
reconstruction and 48.54% of vertices having errors <2mm for multi-view recon-
struction, surpassing specialized multi-view method, MVF-Net. This consistent
excellence across both datasets and in both single-view and multi-view scenar-
ios demonstrates our method’s robustness, scalability, and practical value for
high-precision reconstruction applications.

Table 1. Quantitative comparison of reconstruction quality on FPD-100 and FaceScape
datasets under different view settings.

Datasets Setting Methods PSNR ↑ SSIM ↑ FID ↓

FPD-100 single-view

3DFFA-v3 25.73 0.89 37.89
Deep3Dface 24.46 0.83 45.15

Smirk 26.52 0.84 38.41
Ours 27.74 0.88 37.13

<0.5mm(%) ↑ <2mm(%) ↑ Avg.(mm) ↓

FaceScape single-view
Smirk 5.12 46.34 3.14

3DFFA-v3 5.29 45.62 2.98
Ours 5.24 46.98 3.03

FaceScape multi-view MVF-Net 4.34 31.42 7.80
Ours 5.64 48.54 2.99

Qualitative Results The results in Figure 2 and 3 highlight our method’s
advantages. SFPFR accurately reconstructs oral deformations in facial paralysis
patients, preserving critical details like drooping mouth corners and mouth de-
viation, while other methods exhibit shape distortion and detail blurring. Our
approach maintains high realism across different age groups and facial features,
with particularly accurate facial contour reconstruction.

Table 2. Ablation study results. A: Multi-view consistency loss. B: Temporal action
feature capture module. C: Expression modification. D: Partitioned dynamic fusion.

No. Module A Module B Module C Module D PSNR↑ SSIM↑ FID↓

1 ✓ ✓ 27.74 0.88 37.13
2 ✓ ✓ ✓ 27.93 0.89 35.89
3 ✓ ✓ 26.54 0.81 36.93
4 ✓ ✓ 27.53 0.83 37.06
5 ✓ ✓ ✓ ✓ 28.20 0.89 35.35
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Fig. 2. Comparison of mesh reconstruction quality between SFPFR and other methods.

Ablation Study We conducted ablation studies to validate the effective-
ness of each module in the reconstruction process, as shown in Table 2. The
results from experiments 1, 2, and the comparison between experiments 2 and 5
demonstrate that Modules A and D improved PSNR and SSIM, enhancing facial
movement detail capture. Additionally, the comparison between experiments 2
and 4 shows that Module C significantly improved reconstruction quality, while
experiments 2 and 3 confirm that Module B enhanced temporal coherence and
captured facial expression changes in facial paralysis patients.

Fig. 3. Visual comparison of rendered facial reconstructions between SFPFR and other
methods.
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4 Conclusion

We presents SFPFR, a novel self-supervised framework for 3D facial reconstruc-
tion of facial paralysis patients using 1-3 viewpoints. Our framework addresses
three critical challenges through key innovations: (1) a self-supervised learning
paradigm with multi-view consistency loss and Mamba-based temporal loss for
capturing asymmetric pathological features without ground truth; (2) a par-
titioned dynamic fusion module for precise geometric reconstruction; and (3) a
temporal action feature capture module for ensuring temporal coherence. Exten-
sive experiments on our FPD-100 dataset and public benchmarks demonstrate
SFPFR’s superior performance (PSNR: 27.74, FID: 37.13), with ablation stud-
ies validating each module’s effectiveness. The proposed method advances both
technical boundaries and clinical applications, having potential applications for
the evaluation, diagnosis, and treatment planning of facial paralysis.
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