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Abstract. Anterior Segment Optical Coherence Tomography (AS-OCT)
is an emerging imaging technique with great potential for diagnosing an-
terior uveitis, a vision-threatening condition. This condition is charac-
terized by the presence of inflammatory cells in the eye’s anterior cham-
ber (AC). Automatic detection of these cells on AS-OCT images has
attracted great attention. However, this task is challenging since each
cell is minuscule (extremely small), representing less than 0.005% of the
high-resolution image. Moreover, pixel-level noise introduced by OCT
can be misclassified as cells, leading to false positive detections. These
challenges make both traditional image processing algorithms and state-
of-the-art (SOTA) deep learning object detection methods ineffective for
this task. To that end, we propose a minuscule cell detection framework
that progressively refines the field-of-view from the whole image to the
AC region, and further to minuscule regions potentially containing indi-
vidual cells. Our framework consists of: (1) a Field-of-Focus module that
uses a vision foundation model to zero-shot segment the AC region, and
(2) a Fine-grained Object Detection module that introduces Minuscule
Region Proposal followed by our Cell Mamba to distinguish individual
cells from noise. Experimental results demonstrate that our framework
outperforms SOTA methods, improving F1 by around 7% over the best
baseline and offering a more reliable alternative for cell detection. Our
code is available at: https://github.com/joeybyc/MCD.
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1 Introduction

Anterior Segment Optical Coherence Tomography (AS-OCT) is an imaging tech-
nique for visualizing the eye’s anterior chamber (AC), with particular potential
in diagnosing a vision-threatening condition, anterior uveitis. This condition is
characterized by inflammatory cells in the AC [27]. Automated detection of these
cells using AS-OCT images has attracted substantial research interest [10].

However, this task is challenging due to the minuscule size of the cells. As
shown in Fig. 1a (1), on x160 magnification of two regions of an AS-OCT image
(blue boxes), the hyperreflective particles (green boxes in Fig. 1a (2)) represent

https://github.com/joeybyc/MCD


2 B. Chen et al.

Noise out of AC

Noise in ACMiniscule Cell Detection in AC

Air Region out of AC

Regions containing Cells

Regions containing only Noises

160× Zoom-in Region

(1) High-Resolution AS-OCT image (2) Cell in AC

AC 

Region

Cornea

Iris

Iris

Lens

(a)

(1) Expert Label

(4) Ours(3) DL Detector

(2) Thresholding

(b)

Fig. 1: (a) Cells and noise in the AS-OCT image. (b) Qualitative comparisons
of cell detection results using different methods, with green boxes indicating the
detected cells.

target cells. Each occupies less than 0.005% of the image. Moreover, pixel-level
noise (highlighted in red boxes) in OCT images closely resembles the cells in
texture, leading to false positive detections. Traditional denoising methods are
ineffective as they indiscriminately remove both cells and noise.

Previous automated detection methods primarily rely on thresholding, which
determines a decision boundary (threshold) for classifying pixels based on their
intensity values (ranging from 0 for black to 255 for white). Pixels exceeding this
threshold are classified as objects, while others are considered background. In
particular, the Isodata algorithm [22], which is the default thresholding method
in ImageJ1, has been widely used [1, 3, 9, 19,28].

However, these methods still require manual delineation of the AC region to
exclude non-cell particles detected outside this area, making the process time-
consuming and error-prone. Moreover, these methods could miss the cells with
intensity values below their calculated decision boundary (see Fig. 1b (2)).

Deep learning (DL) object detection methods present another potential so-
lution [21]. However, they struggle to capture the fine-grained details of cells
during feature extraction and down-scaling operations, as each cell occupies an
extremely small portion of the image. Consequently, DL detectors often misclas-
sify pixel-level noise as cells due to their textural similarity (see Fig. 1b (3)).

To tackle these challenges, we introduce a progressive field-of-view focus-
ing strategy. The core idea is to gradually refine the focus of analysis: first, by
concentrating on the AC region where such cells are typically found; then, by
zooming in on extremely small, fine-grained subregions that may contain indi-
vidual cells; and finally, by examining the spatial patterns embedded within the
latent representations derived from these minuscule subregions to accurately dis-
tinguish cells from background noise. To implement this approach, we present a
Minuscule Cell Detection (MCD) framework, consisting of two modules:

1 https://imagej.net/ij/
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The Field-of-Focus (FoF) module leverages a foundation vision model to
zero-shot segment the AC region, eliminating the need for manual intervention.
Within this region, our Fine-grained Object Detection (FOD) module detects
individual cells through two key components. We design the Minuscule Region
Proposal to identify extremely small regions where cells might be present, cap-
turing potential cells that thresholding methods would miss. Subsequently, our
Cell Mamba learns to process fine-grained details within these minuscule regions
to distinguish cells from noise, overcoming the limitation of conventional DL
detectors in capturing features of such tiny objects. As a result, our framework
not only detects more cells than thresholding methods but also achieves higher
detection accuracy compared to existing DL detectors (see Fig. 1b (4)).

Our contributions are:
1) We propose MCD to detect minuscule inflammatory cells in AS-OCT

images, where each cell represents less than 0.005% of the image. MCD achieves
SOTA cell detection performance, improving F1 by around 7% over the best
baseline and offering a more reliable alternative for cell detection.

2) We reveal a critical limitation in anterior uveitis studies using thresholding
methods: these studies directly use the results detected by these methods for
subsequent analysis without verification, assuming detected objects are cells.
Our experiments demonstrate these methods are actually inaccurate, which has
crucial clinical implications for future research.

2 Method

Fig. 2 illustrates our MCD framework, which comprises a Field-of-Focus (FoF)
module and a Fine-grained Object Detection (FOD) module.

The FoF (bottom-left of Fig. 2) first segments the anterior chamber (AC) re-
gion. This resolves the limitation of threshold-based methods that cannot elimi-
nate false positives outides the AC region without manual effort. Unlike conven-
tional DL segmentation models (e.g., U-Net [23]) that require extensive anno-
tated data, FoF utilizes a vision foundation model for zero-shot segmentation.
These types of models can segment regions given an image and points (prompts)
inside the object of interest. We design an Image-to-AC-Prompt (I2ACP) al-
gorithm (section 2.1) to automatically generate these prompt points. In this
work, we adopt Segment Anything Model (SAM) [16] as our foundation model
to produce the AC segmentation mask.

Within the AC region, the Fine-grained Object Detection (FOD) module
identifies cells through two components. First, a Minuscule Region Proposal
(MiRP) algorithm (section 2.2) locates candidate boxes that potentially contain
cells (middle of Fig. 2), aiming to identify cells that thresholding methods may
miss. These regions preserve fine-grained details, which are processed by our Cell
Mamba (section 2.3) to distinguish between actual cells and background noise
(bottom-right of Fig. 2). This learns the fine-grained details that traditional DL
detectors lose.



4 B. Chen et al.

Vision

Foundation 

Model 

FoF FOD

Prompt  Points

Map Back to Image

Input  Image Output  Image with Cell Boxes

Candidate

Boxes

…

Cells

…

Cell Mamba

VSS Block

VSS Block

VSS Block

Spatial Attention Block

Fully-Connected Block …

Background

Noise

AC 

mask

Image with Candidate Boxes

Minuscule Region 

Proposal

𝝀, 𝑺𝒎𝒊𝒏, 𝑺𝒎𝒂𝒙

Crop

I2ACP

Get Anterior 

Segment Mask

Fig. 2: The overall architecture of our minuscule cell detection framework.

2.1 Image-to-AC-Prompt (I2ACP)

The I2ACP automatically generates prompts for vision foundation models to
segment the AC region by exploiting two key anatomical features: (1) the an-
terior segment (AS) structure (cornea, iris, and lens, see Fig. 1a(1)) appears
as high-intensity regions surrounding the AC, and (2) the AS centroid and its
neighboring points naturally fall within the AC.

To generate the prompts, the I2ACP first creates a binary mask by threshold-
ing the AS-OCT image at its mean intensity, capturing the bright AS structure
(the mask inside the I2ACP block of Fig. 2). The largest connected component
typically represents the AS. In cases where AS appears as two disconnected
components, we compute the area ratio r = A2/A1 between the second-largest
(A2) and largest (A1) components, merging them if r > R. Based on the mask’s
centroid (xcent, ycent), we generate a set of prompts pi using controlled offsets:

pi = (xcent + δwi , y
cent + δhi )

These prompts (green points in the I2ACP block of Fig. 2) guide the vision
foundation model to accurately segment the AC region.

2.2 Minuscule Region Proposal (MiRP) for Finding More Cells

MiRP identifies minuscule regions potentially containing cells within the seg-
mented AC region. It exploits the observation that cells appear as bright, mi-
nuscule particles against darker backgrounds. Given a high-resolution AS-OCT
image I, an AC mask MAC from FoF, and cell size bounds [Smin,Smax], MiRP
first converts I to grayscale G.
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We use Otsu’s method [20], a widely-used particle detection method in med-
ical imaging, to calculate an initial thresholding decision boundary T init from
G. To capture lower-intensity cells that this boundary might miss, we introduce
an adjustment factor λ:

T opt = λ× T init

where λ < 1.0 lowers the decision boundary, enabling detection of dimmer par-
ticles overlooked by conventional thresholding methods (Fig. 1b(2)).

Using T opt, we generate a binary mask Mbright := G > T opt and identify
candidate cells by extracting connected components within the AC (Mbright ∧
MAC). We then apply size constraints [Smin,Smax] to filter out candidates too
large or too small to be cells [9, 19]. For each remaining particle, we generate
w× h bounding boxes centered at its centroid as candidate boxes (shown in the
middle of Fig. 2).

While lowering the decision boundary helps detect more potential cells, it in-
evitably introduces noise particles that conventional thresholding would exclude.
We propose Cell Mamba to tackle this by learning the fine-grained details that
distinguish actual cells from background noise in these minuscule regions.

2.3 Cell Mamba for Fine-grained Feature Learning

Cell Mamba captures the fine-grained details essential for distinguishing minus-
cule cells from noise. Given a candidate box X ∈ Rw×h×3 (where w, h, and 3
represent width, height, and number of channels), we extract features by using
three stacked Visual State-Space blocks [18], denoted as V SSi(·):

Fvss = V SS3(V SS2(V SS1(X )))

The resulting feature map Fvss ∈ RWv×Hv×Cv

(where W v, Hv, and Cv

denote the width, height, and channels of the feature map) captures essential
fine-grained details. We then apply a spatial attention block inspired by [29] to
model spatial relationships, generating an attention map A ∈ RWv×Hv×1:

A = σ(Conv([AvgPool(Fvss);MaxPool(Fvss)]))

where σ(·) is the sigmoid activation, Conv(·) denotes a convolutional layer with
kernel size 3 and padding 1, and AvgPool(·) and MaxPool(·) represent channel-
wise average and maximum pooling operations. The attended feature map is
obtained through element-wise multiplication:

Fsa = A⊙Fvss

where A is broadcast across all channels of Fvss. Then, Fsa is flattened and
passed through fully connected layers FC(·) to predict if the box contains a cell:

Ŷ = FC(Flatten(Fsa))

During training, we construct samples by cropping bounding boxes from an-
notated cell regions (positive samples) and non-cell areas (negative samples),
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Table 1: Comparison of AC segmentation performance.
Methods Swin-Unet [5] UNet++ [32] UNet [23] nnUNet [11] FoF
IoU(%) 95.88 95.63 95.98 96.23 96.53
Dice(%) 97.10 97.54 97.86 97.92 98.07

maintaining an imbalanced sampling ratio N pos : Nneg. The network is opti-
mized using cross-entropy loss:

L = − 1

N b

N b∑
i=1

2∑
c=1

Yi,c log(Ŷi,c)

where N b is the batch size, i represents the index of each sample in a batch,
Yi,c represents the ground truth label for class c, and Ŷi,c is the predicted prob-
ability. Training terminates if validation loss shows no improvement for N patient

consecutive epochs.

3 Experiment

3.1 Datasets and Evaluation Metrics

We evaluated MCD using 1,376 high-resolution AS-OCT images (1598×1465
pixels) from the Imaging in Childhood Uveitis studies [2, 9, 26]. Six ophthalmic
clinicians annotated the data via the Citizen Science project [13] on the Zooni-
verse2, with final verification by a senior ophthalmologist. The dataset was split
into 630 images for AC segmentation and 746 for cell detection evaluation.

We annotated 630 images for AC segmentation, using Intersection over Union
(IoU) and the Dice coefficient as the metrics. We annotated 746 images for cell
detection. Clinicians annotated by clicking cells, generating 10×10 pixel ground
truth boxes centered at clicked points, each occupying < 0.005% of image area.

We use two matching criteria for a correct cell detection: (1) bounding box
containing a ground truth point (denoted as "point") and (2) IoU>30% with
ground truth box (denoted as "30"). The low IoU threshold accounts for sig-
nificant IoU decrease in small object detection [8]. Each ground truth cell is
matched only once to prevent double-counting.

To evaluate cell counting accuracy, we calculate two Mean Absolute Er-
ror (MAE) metrics across all images: MAEall measures the average absolute
difference between predicted and ground truth cell counts across all images,
while MAEc considers only correctly detected cells. To evaluate spatial localiza-
tion accuracy of detection boxes, we calculate precision, recall, and F1-score
based on the two matching criteria. All experiments used 40/10/50% train-
ing/validation/testing splits, repeated 5 times with different random splits.

2 https://www.zooniverse.org/
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Table 2: Comparison Between Predicted and Ground Truth Cell Counts. † indi-
cates methods that process only 300 × 300 image patches instead of the whole
image.

Methods MAEall MAEc
point MAEc

30

† Faster-RCNN [21] 2.49 1.03 1.15
† Cascade-RCNN [4] 2.45 0.86 0.97
† RetinaNet [17] 1.74 1.12 1.24
† RepPoint [30] 2.88 1.18 1.29

Otsu [20] 1.59 1.59 1.69
Isodata [22] 1.57 1.56 1.66
MCD (Ours) 0.85 0.72 0.84

3.2 Baselines and Implementation Details

In the I2ACP, we generated two prompt points at offsets (δw1 , δ
h
1 ) = (0, δ′ ×W )

and (δw2 , δ
h
2 ) = (0,−δ′×W ) from the centroid of the AS. We used grid search over

δ′ [0–0.5] and R [0.4–0.95] in 0.05 steps on the validation set, yielding optimal
values of δ′ = 0.1 and R = 0.65. In the MiRP, λ was searched from 0.70 to
1.00 in 0.01 steps on the validation set. As λ grows, MCD’s precision rises and
recall declines, with F1 exhibiting a rise-peak-decline pattern. The optimal λ was
selected based on the F1 peak and empirically set as 0.83. We set Smax = 25
based on clinical observations that larger objects are unlikely to be cells [9, 19],
and Smin = 1 to include all potential cell candidates. Both w and h were set as
10. For our Cell Mamba, N pos, Nneg, N patient, and N b were set to 1, 5, 30 and
128, respectively.

We compared FoF against SOTA segmentation baselines (UNet [23], UNet++
[32], nnUNet [11], Swin-Unet [5]) and evaluated cell detection against both
threshold-based and DL-based approaches, considering only cells within seg-
mented AC regions for a fair comparison.

Threshold-based methods include Otsu [20] and Isodata [22] (widely used
in AS-OCT [1, 3, 9, 19, 28]). Both methods identify connected components (re-
moving >25 and <2 pixels [9, 19]), with results converted to 10×10 pixel boxes
at centroids. For DL-based methods, we evaluated Faster-RCNN [21], Cascade-
RCNN [4], RetinaNet [17], RepPoint [30], DETR [6], Deformable-DETR [33],
DINO [31], and YOLO11 [12]. Our initial attempts to train these models on
full-resolution images failed to detect any cells as cells are miniscule, occupy-
ing less than 0.005% of the image area. Then, we divided images into 300×300
patches for training/inference, with results mapped back and standardized to
10×10 boxes. For brevity, we report only models achieving F1 scores >55%.

4 Results and Discussion

Table 1 shows FoF, with zero-shot training, achieves a high IoU of 96.53% and
a Dice coefficient of 98.07%, results comparable with the baseline models that
require training.
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Table 3: Cell detection results on Precision (%), Recall(%) and F1(%). † indicates
methods that process only 300 × 300 image patches instead of the whole image.

Methods Presicionpoint Recallpoint F1point Presicion30 Recall30 F130

† Faster-RCNN [21] 52.27 78.56 62.77 50.56 75.99 60.72
† Cascade-RCNN [4] 54.93 82.11 65.82 53.33 79.71 63.9
† RetinaNet [17] 59.13 76.66 66.76 57.16 74.11 64.54
† RepPoint [30] 47.41 75.47 58.24 45.95 73.14 56.44

Otsu [20] 91.22 67.35 77.48 88.37 65.25 75.06
Isodata [22] 90.43 68.03 77.65 87.72 65.99 75.32

MCD 85.10 84.79 85.01 82.48 82.02 82.32

Table 2 shows that our MCD achieves the lowest cell counting error across
all metrics, with MAEall, MAEc

point, MAEc
30 of 0.85, 0.72, 0.84, respectively.

This means that, on average, our MCD’s cell count differs from the ground
truth by less than one cell per image, indicating highly accurate quantification
of inflammatory cells.

Table 3 shows that Our MCD achieves the highest F1 scores across all criteria:
85.01% for F1point, and 82.32% for F130. Our MCD improves F1 by around 7%
over the best baseline. This significant improvements demonstrates our MCD’s
ability to effectively detect cells while maintaining a low false detection rate.

Previous thresholding detection methods used in anterior uveitis studies [1,
3, 9, 14, 15, 19, 24, 25] reported strong correlations between their detected cell
counts and the clinical severity score of anterior uveitis. However, these studies
proceeded without verifying the correctness of individual cell detections. Our
evaluation reveals two major limitations in these methods: cell count inaccuracy
(as shown in Table 2) and imprecise spatial localization of detected cells (as
shown in Table 3). While these methods demonstrated correlations with clinical
scores, these correlations were likely based on incomplete and spatially inaccurate
cell detection. This imprecision could negatively impact future research that
requires accurate cell counting or studies investigating the relationship between
spatial cell distribution patterns and disease progression.

In contrast, our MCD achieves good performance in detecting the cells. It
opens up new possibilities for investigating the spatial distribution of inflam-
matory cells within the AC, which could enhance our understanding of disease
pathogenesis and progression. Such insights could contribute to the develop-
ment of more personalized treatment strategies, potentially improving patient
outcomes. Furthermore, our framework could serve as a valuable reference for
detecting extremely small objects in other medical imaging scenarios.

Despite our MCD’s superior performance in detecting minuscule cells in AS-
OCT images, several limitations must be acknowledged. A challenge is the lim-
ited availability of public datasets for these tasks, making the development and
release of comprehensive datasets essential for future research advances. Addi-
tionally, AS-OCT image quality can vary - artifacts and quality degradation may
occur [7], potentially affecting MCD’s effectiveness.
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5 Conclusion

We tackle the challenge of automatically detecting cells in AS-OCT images for
anterior uveitis study by proposing a detection framework named MCD. We
also reveals critical limitations in previous anterior uveitis studies that relied on
threshold-based methods for cell detection, suggesting potential underestimation
of inflammatory cell populations. MCD not only improves the technical aspects
of cell detection but also holds promise for advancing clinical care and research
in ocular inflammation.
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