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Abstract. Automated segmentation of the left ventricular endocardium
in echocardiography videos is a key research area in cardiology. It aims
to provide accurate assessment of cardiac structure and function through
Ejection Fraction (EF) estimation. Although existing studies have achieved
good segmentation performance, their results do not perform well in EF
estimation. In this paper, we propose a Hierarchical Spatio-temporal Seg-
mentation Network (HSS-Net) for echocardiography video, aiming to im-
prove EF estimation accuracy by synergizing local detail modeling with
global dynamic perception. The network employs a hierarchical design,
with low-level stages using convolutional networks to process single-frame
images and preserve details, while high-level stages utilize the Mamba
architecture to capture spatio-temporal relationships. The hierarchical
design balances single-frame and multi-frame processing, avoiding issues
such as local error accumulation when relying solely on single frames
or neglecting details when using only multi-frame data. To overcome lo-
cal spatio-temporal limitations, we propose the Spatio-temporal Cross
Scan (STCS) module, which integrates long-range context through skip
scanning across frames and positions. This approach helps mitigate EF
calculation biases caused by ultrasound image noise and other factors.
We achieved state-of-the-art results on three datasets. Our code is avail-
able at https://github.com/DF-W/HSS-Net.
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1 Introduction

The primary of echocardiography analysis is to assess cardiac function, where
accurate segmentation of the left ventricular endocardium is essential to measure
the heart’s Ejection Fraction (EF) [3,1]. However, achieving automatic echocar-
diography segmentation presents significant challenges. Firstly, the quality of
ultrasound images is often compromised by noise, artifacts, and boundary blur-
ring [19,18]. Secondly, the heart undergoes complex motion and deformation
during each heartbeat cycle.

https://github.com/DF-W/HSS-Net
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Fig. 1. Left ventricular segmentation maps for ED and ES frames from A2C and A4C
views, with Dice segmentation metrics displayed at the bottom. It is evident that
smaller segmentation errors in the key regions (base and apex) within the
blue box lead to greater EF calculation deviations. The green, red, and yellow
represent the ground truth, prediction, and overlapping regions, respectively.

Moreover, physicians typically only annotate the End-Diastolic (ED) and
End-Systolic (ES) key frames, resulting in limited and sparse annotation data.
Therefore, the automated segmentation method is trained on limited annotated
data, providing a reliable foundation for the accurate evaluation of cardiac func-
tion clinical metrics.

Recently, deep learning methods for echocardiography video segmentation
have emerged rapidly. Although effectiveness achieved, their results are not sat-
isfactory when applied to ejection fraction estimation [16,22,21,24]. Many studies
focus on 2D segmentation of ED and ES frames, with numerous unlabeled frames
left unused, resulting in an inability to capture the continuity of cardiac mo-
tion [12,8,27]. To address this, Painchaud et al. [13] proposed a post-processing
framework that leverages cardiac anatomical priors to enhance inter-frame con-
sistency. However, its performance is highly dependent on the quality of the
initial segmentation. Similarly, Wei et al. [20] used generated pseudo-labels for
collaborative learning of segmentation and tracking, while the method is con-
strained by the quality of the pseudo-labels. The Transformer architecture, with
multi-head self-attention [17], has been widely adopted in video object segmen-
tation [2]. Temporal continuity across frames offers valuable segmentation cues.
To exploit this, some methods add specialized modules atop self-attention to
capture temporal information. However, this may cause over-reliance on multi-
frame relations while overlooking fine details. Moreover, modeling long sequences
with many labeled frames introduces heavy computational costs.

In this paper, we propose a Hierarchical Spatio-temporal Segmentation Net-
work (HSS-Net) for echocardiography video segmentation, enhancing the preci-
sion of ejection fraction estimation. The low-level stages utilize convolutional net-
works to process single-frame images, preserving fine details, while the high-level
stages employ the Mamba architecture to capture spatio-temporal relationships
across multiple frames. By better integrating local and global features, the model
reduces segmentation errors in key regions (e.g., the base and apex) and miti-
gates volume calculation biases caused by local errors, as shown in Fig. 1. The
network captures inter-frame motion patterns, enhancing the temporal consis-
tency of the segmentation results and improving EF estimation stability. To fully
utilize unlabeled data and strengthen the capture of dynamic cues, we propose a
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Fig. 2. Illustration of the proposed HSS-Net framework, which is a symmetric Encoder-
Decoder architecture.

spatio-temporal cross scan module, which captures dynamic cues from different
spatio-temporal perspectives. This module integrates long-range dependencies,
such as apex motion changes and the correlation of lateral wall contraction,
through a skip-connections-based spatio-temporal scan. Additionally, global dy-
namic modeling reduces sensitivity to interference factors, preventing abnormal
jitter in segmentation boundaries and ensuring the reliability of EF estimation.

Contributions: i) We propose a hierarchical spatio-temporal segmentation
framework, which combines convolutional and Mamba architectures for detailed
local and temporal processing. ii) A STCS Module is proposed to capture dy-
namic cues from multiple perspectives, enhancing robustness and accuracy. iii)
We present a novel jump scanning mechanism, which breaks local correlations
to integrate global information, improving generalization across diverse samples.
iv) Experimental results show the effectiveness of the proposed model.

2 Methodology

Overview. The architecture of our HSS-Net, illustrated in Fig. 2, consists of
two modules: Encoder and Decoder. The first and second stages of the Encoder
are primarily composed of stacked separable convolution blocks for low-level



4 D. Wang et al.

(a) Temporal 
Forward & Backward

(b) Spatial 
Forward & Backward

(d) Spatio-temporal 
Anti-diagonal

 Forward & Backward

(c) Spatio-temporal 
Diagonal

 Forward & Backward

Forward & Backward Scan

Forward & Backward Scan

Forward & Backward Scan

Forward & Backward Scan

SS
M

 B
lo

ck

Spatio-Temporal Cross Scan  Module

1 n

2

2

1 2 n

1 2 n

1 n2

1 2 n

1 2 n

1 n

2

1

2

n

1

2

n

1 n

21

2

n

1

2

n

1 3

4 5 6

7 8 9

1

4

7

2

5

8 9

6

3

Fig. 3. Spatio-temporal cross scan module and its scanning sequence (It denotes the
t-th frame in the video clip, and n denotes the number of patch sequences).

feature capture within single-frame images. The third and fourth stages are
mainly composed of stacked spatio-temporal Mamba blocks for high-level feature
capture across multiple frames. The Decoder architecture is symmetric to the
Encoder, with a different number of stacked blocks. It is used to fuse multi-scale
features and predict the segmentation mask. Specifically, given a video clip of
T frames, denoted as V = {I1, I2, ..., IT }, we first apply patch embedding to
divide these frames into different patches. The patch sequence is then fed into
the encoder, resulting in the i-th stage feature Fi, with a size of H

2i+1 × W
2i+1 , where

H and W represent the height and width of the original frames, respectively,
and i ∈ {1, 2, 3, 4}. Finally, these multi-scale features are passed to the decoder,
where operations such as inter-frame perception, intra-frame perception, and
up-sampling are performed to generate the predicted segmentation results.

2.1 Separable Convolution Block

Fig. 2 illustrates the structure of the separable convolution block. For the i-stage
feature embedding of low-level Fi ∈ RT×Ci×Hi×Wi , i ∈ {1, 2} of the given video
clip, layer normalization (LN (·)) is performed before performing separable con-
volution operations (SC(·)). We follow the inverted separable convolution module
from MobileNetV2 [15]. Subsequently, feeding the result into the FeedForward
Network (FFN (·)) layer to capture low-level features such as edges and textures
in single-frame images. The output features are either passed to the next stacked
block or forwarded to the next stage. This process can be expressed as:

Fi = SC(LN (Fi)) + Fi, Fi = FFN (LN (Fi)) + Fi. (1)
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2.2 Spatio-temporal Mamba Block

The structure of the spatial-temporal Mamba block is illustrated in Fig. 2. For
the i-stage feature embedding of high-level Fi ∈ RT×Ci×Hi×Wi , i ∈ {3, 4} of
the given video clip, we transpose the channel and time dimensions and flatten
the spatio-temporal feature embedding into a one-dimensional long sequence
si ∈ RCi×THiWi . This sequence si is then fed into the spatio-temporal cross scan
(ST CS(·)) module and FFN layers. The STCS module establishes long-range
dependencies both inter-frame and intra-frame from different spatio-temporal
perspectives. This process can be defined as follows:

si = ST CS(LN (si)) + si, si = FFN (LN (si)) + si. (2)

Finally, the output feature sequences are reshaped back to their original shape,
and after down-sampling, the feature embeddings are passed to the next stage.

Spatio-temporal Cross Scan Module: As shown in Fig. 3, the STCS
module with state space model (S6) [6] is designed for the spatio-temporal se-
quence modeling of video frames. It selectively scans the input sequence from
various spatio-temporal perspectives, capturing intricate spatio-temporal rela-
tionships and providing a comprehensive understanding of the context.

To better understand and explore the spatio-temporal relationships among
frames, we first unfold each frame’s patches into sequences along rows and
columns. As illustrated in Fig. 3, the patches of each frame are unfolded along
rows to form temporal sequences, while the patches at the same position in dif-
ferent frames are unfolded along columns to form spatial sequences. The STCS
module offers four different scanning modes: temporal, spatial, spatio-temporal
diagonal, and spatio-temporal anti-diagonal. As depicted in Fig. 3(a), the mod-
ule scans simultaneously along the temporal sequence in both forward and back-
ward directions to explore bidirectional temporal dependencies. In Fig. 3(b), the
module scans simultaneously along the spatial sequence in both upward and
downward directions to explore bidirectional spatial dependencies. The selective
spatio-temporal scanning explicitly considers both intra-frame and inter-frame
coherencies and leverages the SSM to establish long-range dependencies of intra-
frame and inter-frame.

The heart motion during a heartbeat is not fully synchronous, leading to sim-
ilarities and differences in information among video frames. To disrupt local data
correlations, integrate global information, capture diverse features, and enhance
the model’s generalization and understanding of cardiac structure and motion,
we propose a new spatio-temporal diagonal and anti-diagonal scanning method
(see Fig. 3(c) and (d)). We rearrange spatial sequence positions into diagonal
and anti-diagonal patterns and scan temporally in forward and backward direc-
tions. This cross-frame and cross-position scanning improves the model’s ability
to integrate global information and understand cardiac motion and structure.

Loss Function: During training, our loss function includes the Dice loss
Ldice [11] and binary cross-entropy loss Lbce. Thus, the total loss function
Ltotal = αLdice(P,G)+ (1−α)Lbce(P,G), where G denotes the ground-truth, P
denotes the predicted masks, and the balance weight α = 0.8 in our experiments.
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Table 1. The quantitative results on the CAMUS. FLOPs represent the average com-
putational complexity per frame at a size of 256× 256.

Methods Params FLOPs corr bias± std Dice HD95

UNet++ [28] 26.9M 37.7G 81.68 6.05±6.81 91.87 16.16
TransUNet [4] 105.3M 38.6G 86.22 1.72±6.07 92.73 13.71
SegFormer [23] 47.4M 20.9G 79.10 7.84±7.21 91.17 18.46

H2Former [7] 33.7M 33.1G 82.35 5.79±6.87 91.78 16.06

SSCF [22] 53.7M 15.1G 84.48 4.11±6.37 92.59 14.18
PKEchoNet [21] 25.7M 7.2G 76.20 4.13±8.45 93.02 12.93

VideoMamba [10] 75.6M 22.0G 75.21 8.02±8.00 91.53 16.43
Vivim [25] 59.6M 20.6G 78.09 5.75±7.35 92.79 12.74

HSS-Net (Ours) 31.2M 5.6G 90.47 2.43±5.02 93.89 11.29

Table 2. The quantitative results on the EchoNet-Pediatric and EchoNet-Dynamic
datasets. The HD95 metrics are reported in pixels.

Methods EchoNet-Pediatric EchoNet-Dynamic
corr bias± std Dice HD95 corr bias± std Dice HD95

UNet++ [28] 69.33 7.62±10.16 90.73 3.65 73.91 9.43±9.02 91.50 2.99
TransUNet [4] 73.09 6.54±9.81 91.11 3.52 74.17 4.67±9.51 91.92 2.96
SegFormer [23] 66.72 6.25±10.77 91.10 3.52 73.12 7.07±9.37 92.07 2.90

H2Former [7] 69.77 6.24±10.06 90.89 3.58 74.78 6.10±9.23 91.68 3.12

SSCF [22] 63.29 5.28±11.82 91.07 3.50 74.87 6.26±9.16 92.35 2.80
PKEchoNet [21] 65.04 6.23±11.21 91.00 3.57 75.43 4.34±9.50 92.45 2.71

VideoMamba [10] 67.34 6.39±11.39 91.06 3.50 78.62 4.50±8.29 92.48 2.75
Vivim [25] 69.92 5.59±10.31 91.12 3.46 81.12 7.02±7.47 92.46 2.73

HSS-Net (Ours) 76.91 1.29±8.68 91.90 3.23 84.50 0.95±6.75 92.67 2.66

3 Experiments

Datasets: In this study, three publicly available echocardiography video datasets
are used, namely CAMUS [9], EchoNet-Pediatric [14], and EchoNet-Dynamic [24].
• CAMUS comprises 500 cases acquired at the University Hospital of St Etienne
(France), each including 2D apical 2-chamber and 4-chamber view videos, with
annotations provided for all frames. • EchoNet-Pediatric is collected from Lu-
cile Packard Children’s Hospital Stanford, including 7,643 video clips from 1,958
patients aged 0 to 18 years. This dataset consists of either parasternal short
axis or apical 4-chamber views, with only the ED and ES frames annotated.
• EchoNet-Dynamic consists of 10,030 apical 4-chamber view echocardiogra-
phy videos collected from Stanford University Hospital, with only ED and ES
frames annotated for each video. We uniformly sample 10 frames of each video
clip from datasets, following previous research [5,21]. The video clips are cropped
to ensure that the ED frame is the first and the ES frame is the last, thereby
capturing a complete heartbeat cycle. The frame size was adjusted to 256×256,
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Image Ours Vivim VideoMamba PKEchoNet SSCF H2Former SegFormer TransUnet UNet++

Fig. 4. Visualization of segmentation maps for different models.

and only the annotations from the ED and ES frames were used for training
and evaluation. For the EchoNet-Dynamic dataset, we used the original dataset
splits. For the other datasets, we follow related studies [24,26] and split the data
into training, validation, and testing sets in an 8:1:1 ratio.

Evaluation Metrics: We report three statistical metrics for left ventricular
ejection fraction. The estimation methods vary due to different views provided
by the datasets. For the EchoNet-Dynamic and EchoNet-Pediatric datasets, both
ground truth and predicted ejection fractions are obtained using the Simpson’s
single-plane method of disks [9]. For the CAMUS dataset, the Simpson’s biplane
method of disks [24] is used to calculate ejection fractions. We follow [5,21]
and calculate the Pearson correlation coefficient (corr), mean bias (bias), and
standard deviation (std) for the predicted and ground truth ejection fractions.
Additionally, we employed two widely used segmentation evaluation metrics: the
mean Dice coefficient (Dice) and Hausdorff Distance at 95% (HD95).

Implementation Details: Our model is implemented using PyTorch and
is trained or inferred on two NVIDIA RTX 4090 GPU. We train our model end-
to-end using the Adam optimizer and employ the cosine annealing strategy to
adjust the learning rate. The maximum and minimum learning rates are set to
1e-4 and 1e-5, respectively, and the maximum training epoch is set to 120. During
training, we apply gamma augmentation, random scaling, random rotation, and
random contrast adjustments, each with a probability of 0.5.

3.1 Comparison with State-of-the-art Methods

Quantitative Comparisons: The quantitative results for the three datasets
are presented in Tables 1 and 2. It can be seen that our model outperforms other
methods in all datasets. However, image-based methods (The first four) still ex-
hibit competitive performance on certain datasets. These methods focus on cap-
turing local features within single-frame images, whereas video-based methods
(The last four), although proficient in capturing temporal information, may not
fully exploit their advantages on datasets with minimal inter-frame differences
or subtle dynamic changes. Our model hierarchically processes single-frame and
multi-frame information, balancing both detailed features and dynamic changes
in echocardiography. This approach is particularly advantageous for ejection frac-
tion estimation. Additionally, it maintains an optimal balance between model
performance and computational complexity.
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Table 3. Quantitative results of ablation studies.

Settings CAMUS EchoNet-Dynamic
corr bias± std Dice HD95 corr bias± std Dice HD95

Image-level 83.48 5.28±6.71 92.93 13.91 74.79 6.00±9.34 91.93 2.97
Video-level 80.67 4.48±7.04 93.04 13.09 78.01 4.62±7.92 92.03 2.91

w/o Temporal 83.73 4.20±6.67 93.02 14.26 78.42 4.80±8.02 92.10 2.90
w/o Spatio 80.44 5.05±7.44 93.26 12.57 77.86 4.76±8.21 92.32 2.79
w/o ST Diagonal 86.69 4.05±5.99 93.21 12.40 79.65 6.03±7.70 92.12 2.84
w/o ST Anti-diagonal 88.09 2.95±5.57 93.27 12.28 81.11 4.85±7.54 92.26 2.82

HSS-Net (Ours) 90.47 2.43±5.02 93.89 11.29 84.50 0.95±6.75 92.67 2.66

Qualitative Comparisons: We present visualizations of several challeng-
ing cases. As shown in Fig. 4, these sample images exhibit artifacts, speckle
noise, and blurred boundaries. Such challenging conditions mislead most of the
compared models, resulting in missed or misclassified regions. In contrast, our
model accurately locates the regions and delineates the boundaries. These visual-
izations further demonstrate that our approach can achieve better segmentation
results and robustly handle poor-quality images.

3.2 Ablation Study

Effectiveness of Hierarchical Design: To validate the effectiveness of the hi-
erarchical design, we perform two sets of ablation experiments. One set processes
single-frame images at all stages using only separable convolution blocks (labeled
as Image-level). The other set processes multi-frame images at all stages using
only spatio-temporal Mamba blocks (labeled as Video-level). As shown in Ta-
ble 3, the model performance in both experiments decreased to varying degrees,
especially in the key metric of Pearson correlation for ejection fraction estima-
tion. This demonstrates that by extracting fine-grained details at the low level
and modeling cross-frame temporal relationships at the high level, the model ef-
fectively handles subtle differences across different conditions, providing a more
reliable foundation for clinical assessment of cardiac function.

Effectiveness of Spatio-temporal Cross Scan Module: We investigate
the effect of each mode in the STCS module. As shown in Table 3, all performance
metrics exhibit varying degrees of decline compared to our full method. Temporal
scanning captures sequential dynamic information during cardiac motion, which
is crucial to accurately modeling heart movement patterns. Spatial scanning
aids the model in understanding changes at the same location across different
time frames. This enhances the model’s ability to perceive spatial consistency
features. Spatio-temporal diagonal and anti-diagonal scanning effectively capture
complex interactions between temporal and spatial dimensions, enhancing the
model’s ability to integrate spatio-temporal information.
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4 Conclusion

We propose a novel method HSS-Net that employs a hierarchical design. The
low-level stages use convolutions to extract local details from single-frame im-
ages, while the high-level stages leverage the Mamba architecture to process
spatio-temporal information across multiple frames. By handling single-frame
and multi-frame information hierarchically, the model’s accuracy and robust-
ness are enhanced. Extensive experimental results demonstrate that our method
achieves state-of-the-art results on three benchmark datasets.
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