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Abstract. Obesity is a chronic disease that increases the risk of multi-
organ damage as well as cardiovascular disease, diabetes, and certain
cancers. It is strongly related to Visceral Adipose Tissue (VAT), which
is the fat stored around the internal organs. New approaches to assess-
ing VAT in large populations are essential to understand how obesity
contributes to chronic disease progression. Various direct and indirect
measures have been developed to quantify VAT. However, many of these
techniques either fail to distinguish between various types of body fats
(e.g., subcutaneous versus visceral) or involve high radiation imaging
and/or are costly (e.g., Computed Tomography). Annually, millions of
individuals globally undergo hip or spine Dual-energy X-ray Absorptiom-
etry (DXA) scans to screen for osteoporosis as well as lateral spine (LS)
scans to detect vertebral fractures. In this paper, we develop a multi-
modal attention-based framework for VAT estimation from LS DXA
scans and patient demographic information. We compare our results on
two LS DXA datasets with baseline methods and also perform clinical
analysis to demonstrate its effectiveness. The proposed approach has the
potential to enable cost-effective, non-invasive, and efficient quantifica-
tion of VAT in people undergoing bone density assessment with LS scans.
To the best of our knowledge, this is the first paper to predict VAT from
DXA LS scans.

Keywords: Obesity - Visceral Adipose Tissue - Lateral Spine DXA
scans - Multi-modality - Feature Fusion

1 Introduction

Obesity, characterized by an excessive accumulation of body fat, poses a serious
threat to global health [20]. It is a leading cause of morbidity and mortality world-
wide, contributing to a wide range of chronic conditions including cardiovascular
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disease, and type-2 diabetes [4], placing a substantial burden on healthcare [IJ.
Obesity is associated with changes in adipose tissue, which is categorized into
two main types based on their distinct locations and metabolic characteristics:
(i) Subcutaneous Adipose Tissue (SAT) and (ii) Visceral Adipose Tissue (VAT).
Although both are vital for various body functions, visceral adiposity is a major
contributor to a range of serious health conditions, including cardiovascular dis-
ease, obesity-related cancers, high blood pressure, impaired glucose regulation,
high triglycerides, and low high-density lipoprotein cholesterol [2/4/17].

Obesity is often measured using indirect methods such as body mass index,
waist circumference, waist-to-height ratio and waist-to-hip ratio [30]. However,
these methods do not capture the fat distribution or distinguish between VAT
and SAT [7J30]. This oversimplification contributes to inconsistencies in diag-
nosis, highlighting the need for a more precise approach to measure obesity [7].
Advancements in medical imaging have paved the way for precise non-invasive
methods for assessing VAT [29]. Imaging techniques such as digital X-rays, Mag-
netic Resonance Imaging (MRI), and Computed Tomography (CT) are used to
evaluate fat mass [30/I8]. However, X-rays and CT scans expose patients to
moderate/high levels of ionizing radiation [I5], while MRI is expensive [I§].
Dual-energy X-ray Absorptiometry (DXA), on the other hand, is a cost-effective
technique with minimal radiation exposure [I5]. It is commonly used to evaluate
bone density during routine osteoporosis screening [26127]. Although whole-body
DXA scans can measure VAT in terms of volume, mass, and android-to-gynoid
fat mass ratios [I9], they are not routinely obtained in clinical practice. Alter-
natively, DXA-derived Lateral Spine (LS) scans are often obtained in routine
clinical practice to assess vertebral fractures [26] and offer the advantage of sig-
nificantly shorter scan times. In this work, we leverage LS DXA scans instead
of whole-body DXA scans and design a novel framework for VAT prediction. To
the best of our knowledge, this is the first such attempt.

Several attempts have been made to quantify different types of adipose tissue
using CT or MRI scans. Park et al. [21] utilized a Convolutional Neural Network
(CNN) for automated segmentation of abdominal muscle and fat areas on CT
scans. Feng et al. [9] proposed the FM-Net consisting of two Res-UNet blocks
to localize Epicardial Adipose Tissue (EAT) from MRI scans. Qu et al. [22] also
employed a variant of UNet for EAT segmentation using CT scans. Schneider et
al. [29] used CNN models, including UNet [25], DenseUNet [3], and CDFNet [§],
on MRI scans for abdominal fat quantification. It is worth noting that all these
methods are based on segmentation techniques. However, obtaining manual an-
notations for VAT is a laborious and subjective process [13/29]. Another limita-
tion of these studies is that they can be prone to inaccuracies in segmentation
boundaries, leading to incorrect measurement of VAT. This paper aims to over-
come these limitations by automating VAT measurement using DXA scans, a
widely used imaging modality known for its low radiation exposure and cost.

Despite its benefits, DXA imaging faces challenges such as low signal-to-noise
ratio, low contrast and image artifacts [I5/10]. Furthermore, DXA scans of the
lateral spine do not capture the full abdominal region. These limitations make it
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difficult to distinguish VAT from surrounding tissues and organs. To overcome
this, we add patient demographic data routinely collected during DXA scan-
ning for VAT prediction. This integration is expected to improve the accuracy
of the VAT quantification when combined with DXA imaging data. However,
fusing these modalities is complex due to the differences in data representations:
demographic features such as age, weight, and height are structured numeri-
cal data, while DXA scans are unstructured, high-dimensional images. Aligning
these modalities requires a robust fusion strategy to ensure meaningful interac-
tion between the two.

To address this, we design a unified attention-based approach for VAT pre-
diction from LS DXA scans. This approach ensures the extraction of modality-
specific features while using the attention mechanism for the optimal integration
of patient demographic and imaging data, improving model performance. Our
experiments show that this added information complements the DXA images
by providing additional context. A unique feature of our approach is that we
quantify VAT from LS DXA scans, using labels derived from whole-body DXA
scans. To further validate the relevance of our work, we conduct clinical anal-
ysis to investigate the impact of increased VAT on metabolic syndrome, which
is strongly associated with obesity [II]. The code is available at: our GitHub
repository.

The major contributions of this paper are as follows:

e To the best of our knowledge, this is the first study to automate VAT quan-
tification from lateral spine DXA scans instead of whole-body DXA scans.

e We propose a novel attention-based approach for predicting VAT from LS
DXA scans, integrating both imaging and demographic data to improve pre-
diction accuracy.

e We validate our findings by examining the correlation of both actual and
predicted VAT with specific clinical markers in 837 women. To highlight, in
the test set of 784 women with clinical measures but no VAT measures and
694 women without diabetes but with measures of metabolic syndrome, our
predicted VAT is strongly associated with both clinical markers and odds of
having metabolic syndrome.

2 Methodology

The proposed unified approach, shown in Figure [1| consists of four main com-
ponents: (i) a CNN-based feature extractor, (ii) a tabular encoder to encode
demographic data, (iii) an attention-based fusion mechanism to integrate multi-
modal embeddings, and (iv) prediction of VAT using regression.

The proposed framework comprises a CNN-based encoder for image data and
a Transformer-based encoder for demographic data due to the distinct strengths
each model offers for their respective input types. CNNs excel at capturing spa-
tial hierarchies and local patterns, making them ideal for image feature extrac-
tion. However, tabular data such as age, weight, and height lack spatial rela-
tionships, which limits the effectiveness of CNNs [31]. In contrast, Transformers
excel at handling sequential or tabular data by capturing feature dependencies
without relying on spatial structure [5J3T].
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Fig. 1. Our proposed multi-modal attention-based model for VAT estimation.

Image Feature Extractor: Given an input image X € RE*H>*W 'where C rep-
resents the number of channels, and H and W are the height and width of the
image, we extract image embeddings using the Global Average Pooling (GAP)
layer of a pretrained MobileNetv2 [28], which was trained on the ImageNet [0]
dataset. The output of the GAP layer is a feature vector X, € R1280_ This fea-
ture map is then down-sampled via a custom fully connected layer, producing a
64-dimensional image embedding (X7,,, € R1280 7. o € R%) which effectively
captures the essential features of the image.

Tabular Encoder: Inspired by the vanilla transformer [34], we adapt and mod-
ify the encoder to learn tabular embeddings for patient demographics. Passing
the numeric demographic variables through this block, we map them into a
higher-dimensional embedding space, which allows the tabular encoder to cap-
ture complex relationships between the variables. The attention mechanism
within the encoder allows the model to focus on the most relevant relation-
ship [14], enhancing its capacity to learn complex patterns in the data. The
demographic data for each scan is a vector of three features (see Eq. . This
data is first converted into an embedding using a fully-connected layer.

Demographic = [age, weight, height] € R? (1)

Positional embeddings were introduced in the transformer encoder [34] to
learn contextual and positional information within the input sequence. Unlike
text or time-series data, where positional relationships carry meaning, the order
of features in our tabular dataset is arbitrary and does not impact the semantic
interpretation. Hence, we replace the positional embedding layer with a linear
projection, allowing the tabular encoder to focus on meaningful feature interac-
tions rather than sequence order.

The tabular encoder processes these input embeddings using multi-head self-
attention [34] and a point-wise feed-forward network [34]. While self-attention
captures feature relationships, the feed-forward network applies non-linear trans-
formations to refine feature representations. Multi-head self-attention computes
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attention scores (Eq.|2)) using multiple heads, allowing the model to focus on dif-
ferent parts of the input sequence in parallel. This enables each head to capture
distinct aspects of the input features.

T
Attention(Q, K, V) = softmax (?/Ic%c ) v (2)

The final output of the tabular encoder is pooled across the sequence length
to generate a 64-dimensional demographic embedding (Zgemographic € R64).
Attention Feature Fusion Module (AFFM): The AFFM block is designed
to fuse the image embeddings (Zimg) and demographic embeddings (Zqemographic)
effectively. By fusing the imaging and demographic data, we exploit the strengths
of both modalities, capturing crucial visual and demographic patterns. The
AFFM block consists of three main components: a linear layer, a softmax layer
and a fusion layer. Firstly, image and demographic embeddings are indepen-
dently extracted and passed through separate linear layers to compute modality-
specific attention weights. After Softmax normalization, these weights are ap-
plied to the embeddings to perform weighted fusion. The attention weights
Qimg aNd Qdemographic €an be calculated as @img = softmax(Winmg - Zimg) and
Qdemographic — SOftmaX(Wdemographic . chmographic) reSpeCtiVely, where Wimg and
Wiemographic are the learnable attention weights.

These attention weights adaptively learn to assign more importance to the
most relevant features, ensuring that crucial information is prioritized during
the training process. Finally, the Fusion Layer applies these learned attention
weights to the image and demographic embeddings, generating a single fused
representation, effectively integrating both modalities.

ffusion = Qimg * Zimg + Qdemographic Zdemographic (3)

The fused embeddings ( frusion) are passed through a fully connected network
comprising two hidden layers with ReLU activation and dropout regularization
to prevent overfitting.

3 Experiments and Results

Datasets. We evaluate the effectiveness of our proposed model using two dis-
tinct datasets of LS DXA scans. The Hologic-4500A dataset acquired using the
Hologic 4500A machine contains 2,285 single-energy lateral-spine DXA scans,
with each scan having dimensions of 800 x 287 obtained from a Western Aus-
tralian study of community dwelling ambulant women over the age of 70 years,
the Perth Longitudinal Study of Aging in Women (PLSAW) [16]. The Hologic
Horizon dataset contains a total of 466 scans from the Hologic Horizon machine,
obtained from 245 community dwelling ambulant men and women aged 60 to
80 [23124]. These scans have variable dimensions. Both datasets contain VAT
mass labels in grams (g) obtained from whole-body DXA scans, serving as the
ground truth for training the model. The datasets also include imaging data and
demographic variables (age, weight, and height) collected at scan time.

Implementation Details. The images from both datasets are resized to a fixed
target size of 800 x 287 to ensure uniformity, while avoiding artificial borders
that may hinder learning. Single-channel DXA scans are replicated to 3-channels
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to match pretrained model inputs. Pixel values and demographic variables are
normalized prior training. Data augmentations (+10° rotation and horizontal
flipping with p=0.3) were applied. Flipping was tested but found less effective.
All the experiments are performed in PyTorch using stratified 10-fold cross-
validation. In each fold, the dataset is divided into 80% for training, 10% for
validation and 10% for testing, ensuring that every sample is used for testing
exactly once. The final performance is reported as average across all folds. Models
are re-initialized in each fold to prevent data leakage. Validation loss is used to
adjust the learning rate dynamically. The network is fine-tuned with a low initial
learning rate (1 x 1072) using the Adam optimizer, trained for 25 epochs with
batch size 32, and learning rate is reduced on plateau. Training settings including
no. of epochs and learning rate were selected via grid search within the cross-
validation. The primary loss function is Root Mean Squared Error (RMSE), with
Mean Absolute Percentage Error (MAPE) monitored as a secondary metric.

Evaluation Metrics. The performance of the proposed model is evaluated
using the RMSE, MAPE and Pearson’s correlation.

Baseline. The MobileNetV2 [28] model, trained solely on images with RMSE
loss, serves as the baseline. Instead of direct regression, embeddings from Mo-
bileNetV2 are processed via a 3 x 3 convolution, dropout (p=0.5), and two fully
connected layers (512—128—1) for prediction.

Results and Discussion. The results presented in Table[I] compare the perfor-
mance of our proposed model with the baseline. Across both the Hologic-4500A
and Hologic Horizon datasets, the proposed model consistently outperformed
the baseline in terms of RMSE and MAPE. For the Hologic-4500A dataset, the
MAPE reduced from 28.09% to 25.88%, while the RMSE reduced from 155.59g
to 143.86g. The results demonstrate the ability of our model to generalize better
than the baseline for VAT prediction, capturing patterns from the data more
effectively. A similar trend is also observed in the Hologic Horizon dataset. Our
model significantly improves with a MAPE reduction of 26.42% to 21.96% and
RMSE reduction of 170.08g to 154.55g. Despite overlapping confidence intervals,
paired t-tests confirmed the improvements were significant (p<0.001).

Table 1. Comparison of the proposed model with a baseline for VAT prediction using
the Hologic-4500A [16] and Hologic Horizon [2324] dataset.

Dataset Model MAPE (%) | RMSE (g) |
Hologic-4500A [16] Baseline 28.09 £2.10 155.59 +10.88
Proposed 25.88 £0.75 143.86 £10.04

Hologic Horizon [24] Baseline 26.42 £2.90 170.08 +13.50
Proposed 21.96 +3.49 154.55 +£13.89

The reduction in MAPE and RMSE across both datasets demonstrates the
model’s robustness and accuracy. These improvements stem from the model’s
multi-modal design, integrating imaging and demographic features to capture
complex patterns.

The VAT predictions from the proposed model show a strong correlation with
reference values from both the Hologic-4500A and Hologic Horizon datasets,
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Fig. 2. Bland-Altman plots. The plots show agreement between the actual values
and predicted values against their mean for both understudy datasets.

with Pearson’s correlation values of 0.828 and 0.846, respectively. Given that we
have used the labels from whole-body DXA to train our model, the predictions
are fairly accurate, considering the inherent challenges associated with LS DXA.
Bland—Altman analysis (Figure indicates minimal bias suggesting good agree-
ment between the predictions and reference values, with mean differences of 9.83
(95% limits of agreement: -271.56, 291.22) and 5.89 (95% limits of agreement:
-297.13, 308.92) for Hologic-4500A and Hologic Horizon respectively.

Ablation Studies. For the ablation study, we evaluate the impact of vari-
ous CNN-based models and fusion techniques on the performance of our pro-
posed model. First, we test VGG-16 [32], ResNet-18 [12], ResNet-50 [12], Mo-
bileNetv2 [28] and EfficientNetv2s [33] as feature extractors. Additionally, we
conduct experiments using only demographic data to evaluate the impact of de-
mographic features. We also replace the tabular encoder in the proposed model
with a simple neural network-based encoder.

Table 2. Ablation study evaluating the performance of various CNN-based models
and the impact of different techniques for encoding demographic features using the
Hologic-4500A DXA scan dataset for VAT prediction.

A','}‘;‘;‘;’“ Imaging‘p“;abu]ar Model MAPE(%) | |RMSE (g) |
Modality | Modality

v VGG-16 [32] 42.79 228.81
For image v ResNet-18 33.05 172.82
encoder v ResNet-50 31.97 163.80
v MobileNetv2 28.09 155.59
v EfficientNetv2s [33] 30.87 161.97
v Neural Network 50.54 249.52
For tabular v Tabular Encoder 55.45 393.45
encoder v v Neural Network 29.32 164.38
v v Tabular Encoder 25.88 143.86

The results presented in Table 2] clearly show that MobileNetv2 [28] outper-
forms the tabular encoder when used with an image feature extractor. Notably,
the tabular encoder, with its attention mechanism, demonstrates superior per-
formance compared to the neural network, highlighting its ability to capture



8 A. Magsood et al.

Table 3. Ablation study evaluating the impact of various feature fusion techniques on
the performance of the proposed model using the Hologic-4500A [I6] dataset.

Fusion Technique MAPE (%) | RMSE (g) |
Concatenation 27.93 178.39
Addition 29.06 184.13
Attention-based 25.88 143.86

complex and subtle inter-dependencies between demographic variables. Further-
more, our model shows significant improvement in VAT prediction, particularly
when demographic information is incorporated. The ablation study provides
strong evidence that combining demographic data with DXA imaging leads to
enhanced accuracy in VAT prediction.

We also explore different feature-fusion strategies, including concatenation,
addition, and our proposed attention-based fusion. As shown in Table [3] the
attention-based fusion method outperforms by dynamically weighting the image
and demographic data embeddings, leading to more accurate predictions.

Clinical Analysis: Obesity is a key driver of Metabolic Syndrome (Met-S) [11],
with high triglyceride and low high-density lipoprotein cholesterol levels being
major contributors [IT]. To demonstrate the clinical significance of our work, we
investigate the correlation between predicted VAT and demographic variables
(i.e, age, height, weight), as well as markers of Met-S including total cholesterol
(CHOL), Low-density Lipoprotein Cholesterol (LDL), High-density Lipoprotein
Cholesterol (HDL), and Triglycerides (TRIG) in two cohorts of 1,404 people
(referred to as Dyy.qin) where ground-truth VAT is available. To further test our
model, we use 991 LS DXA images from one of the same cohorts captured 5
years earlier (referred to as Dyes:) where no ground truth for VAT is available.

Table 4. Spearman’s correlation between VAT measures, age, height, weight, and
circulating lipids.

VAT age weight | height CHOL TRIG HDL LDL
(Kg) (cm) | (mmol/L) | (mmol/L) | (mmol/L) | (mmol/L

GT Dirain —0.0797 [0.720" [ 0.033 —0.1097~ 0.3577" —0.346"" —0.056

Pred Dyrain —0.11177]0.7617" | 0.064 —0.1237 0.336™" —0.3327F —0.072

Pred Dyest —0.099""[0.661"" | 0.052 —0.022 0.326™" —0.327"" 0.011

 p<0.01. * p<0.05

First, we compute the correlation between the ground truth values of VAT
(i.e., GT Dirqain) to establish a baseline for comparison (Row-1 Tabled]). We then
calculate the correlation between predictions of our model (i.e., Pred Diyqin) to
assess whether these predictions align with the expected clinical trends. To vali-
date our model, correlation analyses on previously unseen data (i.e., Pred Dis)
show moderate to strong positive correlations between visceral fat, weight and
TRIG, while HDL and CHOL exhibit negative correlations. Similar trends across
cohorts confirm the consistency of associations.

We then exclude women with diabetes, or those missing data needed for Met-
S diagnosis from Dy.,; and apply age-adjusted logistic regression in 694 women
to assess the odds of having Met-S by quartiles (Q) of predicted VAT. The
proportion of women with Met-S was highest in Q4 (women with the highest
predicted VAT) (53.6%), compared to Q3 (25.4%), Q2 (17.4%) and Q1 (12%).
Compared to women in Q1, women in Q3 (OR 2.64 95%CI 1.49-4.68) and Q4
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(OR 8.97 95%CI 5.16-15.61), but not Q2 (OR 1.56 95%CT 0.86-2.85), had sig-
nificantly higher odds for Met-S. This demonstrates that predicted VAT may be
a useful clinical tool when identifying those at risk of Met-S.

4 Conclusion

To our knowledge, this is the first automated method for predicting VAT from
LS DXA images. Our multi-modal framework combines a CNN for image fea-
ture extraction and a tabular encoder with attention fusion to integrate demo-
graphic data. This framework was evaluated on two datasets and achieved state-
of-the-art performance, with cross-sectional validation against Met-S in 684 older
women. One limitation of this study is the lack of matching CT/MRI data, which
prevented comparisons with other imaging modalities. Future work will focus on
assessing the scalability of the model on larger datasets. Additionally, we plan
to investigate vision transformers for image feature extraction and extend the
model to predict both fat and muscle mass, expanding its applicability.
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