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Abstract. Accurate orthopedic fracture reduction planning is essential
for ensuring successful postoperative recovery and improving patient out-
comes. However, current methods are challenged by the complex and ir-
regular fracture geometries and the scarcity of annotated training data.
To address these challenges, we propose a novel approach that integrates
learning-based shape restoration and fracture simulation. A transformer-
based model is developed, which utilizes patch-to-patch restoration and
recursive fragment registration to iteratively refine fracture reduction
poses. To generate diverse and anatomically realistic fractured datasets
for model training, we develop a fracture data simulation approach that
combines statistical shape modeling with clinically representative frac-
ture patterns, reducing reliance on annotated samples. Tested on ex-
tensive clinical data with hipbone and sacrum fractures, the proposed
method achieved mean translational and rotational errors of 2.34 mm
and 4.54°, respectively, outperforming both template-based and existing
learning-based methods. Our approach enhances learning and general-
ization for automated fracture reduction by connecting synthetic and
real-world fracture data.

Keywords: Surgery planning · Point cloud deep learning · Transformer
· Fracture simulation · Statistical shape model.

1 Introduction

Fracture reduction, namely the process of realigning fractured bone fragments,
is critical for optimizing biomechanical stability, promoting healing, and restor-
ing patient mobility [14]. However, the planning process is highly subjective,
time-consuming, and heavily dependent on surgeons’ expertise [19]. Complex
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fractures, especially in the hipbones and sacrum, further complicate the task,
where even minor misalignments can lead to chronic pain and impaired function-
ality. These challenges highlight the need for reliable and automated reduction
planning methods to determine the target pose of each bone fragment [27].

Existing automated approaches fall primarily into two categories: fracture
surface matching and template-based methods. Surface matching methods align
fragments based on geometric features but often fail due to the inaccuracy in
segmenting and defining fracture surfaces [20,15,13,8]. Template-based methods,
such as the widely used mirror-template approach [26,5,28,8], rely on predefined
reference shapes. Although effective for unilateral fractures, they cannot handle
bilateral fractures or bones without contralateral references, such as the sacrum.
Furthermore, the alignment errors caused by anatomical asymmetries between
contralateral bones should not be ignored [6].

As an alternative to the mirror template, statistical models have been studied.
Early methods construct mean shapes of bones but failed to account for individ-
ual variability [4]. Statistical shape models (SSMs) capture anatomical variability
and enable adaptive deformations, providing flexibility in reconstructing diverse
fracture configurations [7,21,12]. However, SSM-based methods require simulta-
neous optimization of fragment poses and deformation parameters, often leading
to suboptimal results due to local minima.

Attempts have been made to apply deep leaning in reduction planning. A
PointNet-based framework has been proposed to facilitate the planning pro-
cess by establishing initial correspondence between fracture fragments and tem-
plates [3]. A convolutional pose estimation network has been used to address
sacroiliac joint dislocation, but has not been applied to fractures of single bones
where the fracture surfaces are more complex [22,11]. A key challenge in learning-
based methods is the scarcity of annotated fracture datasets. The high variability
of fracture patterns calls for models with high generalizability.

Synthetic data generation offers a promising solution to data scarcity. Bidi-
rectional frameworks have been proposed to generate fracture data and learn
non-rigid transformations between healthy and fractured morphologies [25]. This
method relies on real fracture data with contralateral bones for fine-tuning, intro-
ducing challenges when differences between two sides exist. Furthermore, stan-
dard convolutional networks struggle to extract meaningful features from highly
variable fracture morphologies. This underscores the need for tailored feature
extraction methods designed to address such variability.

In this study, we present a learning-based approach for fracture reduction
planning trained with synthetic data that is only based on small datasets. Our
major contributions include: (1) A transformer-based point could processing
network is developed to restore intact bone shape from fractured data through
fragment-aware patch encoding and patch-to-patch translation. (2) A recursive
refinement strategy is implemented to iteratively improve alignment accuracy,
effectively addressing diverse fracture configurations. (3) A simulation pipeline
is developed, leveraging statistical shape modeling to capture anatomical vari-
ability while learning real fracture patterns.
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Fig. 1. Overview of the proposed method. (a) The transformer network performs patch-
to-patch translation to restore bone shape. (b) FAPE encodes local features for each
fragment. (c) Reduction plans are refined through recursive inference and registration.
(d) Synthetic data is generated with rich variations to simulate realistic fracture.

2 Method

We aim to estimate the target pose of each fragment from surface point clouds.
These point clouds are obtained by segmenting fragments in CT scans [10] and
uniformly sampling points on their surfaces. As shown in Fig. 1, a transformer-
based point cloud processing network is developed to restore bone shape, and a
fracture data generation process is designed to support network training.

2.1 Transformer Model for Shape Restoration

Considering the variability in the number, pose, and interactions of fracture
fragments, we formulate the fracture reduction planning task as a patch-to-patch
translation problem based on transformer network, where the input is the la-
beled point cloud of fractured fragments, and the output is the point cloud of
the reconstructed shape. A naive unified encoding for all fragments can lead to
undesired interference among fragments. To mitigate this problem, we design a
transformer-based network that is aware of fragment labels throughout (Fig. 1a).

Fragment-Aware Patch Encoding Fractured bones are represented by point
clouds of multiple fragments. As shown in Fig. 1b, to prepare the fragments
for the transformer-based model, we first sample N patch centers across all
fragments. Direct application of farthest point sampling (FPS) to the entire
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fractured bone may result in incomplete coverage near fragment boundaries. To
address this, we allocate sampling centers proportionally to the point distribution
of each fragment, and then apply FPS within each fragment to obtain center
points and labels {si, ηi}Ni=1 For each center si, we form a local patch Pi by
selecting its k nearest neighbors (kNN) within its entire fragment.

We applied a DGCNN to encode each patch Pi through dynamic graph con-
struction and aggregation. Compared to the original model proposed in [16], both
sampling and neighborhood aggregation are performed using the fragment-aware
FPS and kNN methods described above. To embed fragment-specific identity,
the patch center si is concatenated with its one-hot encoded fragment label ηi,
and then processed by a multilayer perceptron (MLP):

Fi = DGCNN(Pi) + MLP([si, one-hot(ηi)]). (1)

After processing all N patch centers, we obtain a unified set of patch features
F = {F1, F2, . . . , FN}, which serves as input to the transformer modules.

Patch-to-Patch Translation with Transformers In this formulated patch-
to-patch translation task, the input fractured patch features are transformed
into reconstructed patch features. This process is defined as:

V = ME(F), H = MD(Q,V), (2)

where ME and MD are the encoder and decoder models, V = {V1, V2, . . . , VN}
are the encoded patch features, Q = {Q1, Q2, . . . , QN} are the query embed-
dings, and H = {H1, H2, . . . ,HN} are the reconstructed patch features. The
architecture is based on the geometry-aware transformer proposed in [23].

Between the encoder and decoder, a query generator predicts query embed-
dings Q to guide reconstruction. Coarse query centers C are first predicted from
the global feature of V, which is extracted using max-pooling. These centers are
then refined to produce the final query embeddings:

C = Proj(Pool(Linear(V))), Q = MLP([C,Pool(Linear(V))]), (3)

where Proj is a linear layer that predicts 3D coordinates, and Pool is the max-
pooling operation.

Coarse-to-Fine Reconstruction We adopt a multi-scale reconstruction strat-
egy to restore bone shape. The query generator predicts local centers C, which
serve as anchors for reconstructing the point cloud. A fully connected recon-
struction head f refines these centers into detailed local geometries:

Ri = f(Hi) + ci, i = 1, 2, . . . , N, (4)

where Ri represents reconstructed points around each center ci.
The reconstruction loss is computed both at sparse level on the patch centers

C and at dense level on the restored shape R, using the Chamfer distance (CD)
to the ground-truth point cloud G:
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Lrecon = Lsparse + Ldense = CD(C,G) + CD(R,G), (5)

where the same dense ground truth G is used for both dense and sparse supervi-
sion without additional downsampling, since Chamfer Distance does not require
point-wise correspondence.

Recursive Inference and Registration The restored shape serves as a tem-
plate for fracture reduction. During testing, to correct errors from large initial
displacements, we employ a recursive cascade approach (Fig. 1c). At each iter-
ation τ , the network predicts a restored shape R(τ), and fragments are aligned
to R(τ) using the iterative closest point (ICP) algorithm. This updates fragment
poses and transformations {T (τ+1)

i }, which are iteratively refined until conver-
gence (∥T (τ)

i − I∥ < ϵ) or a maximum iteration threshold is reached.

2.2 Training Data Simulation

To generate diverse and clinically realistic fractures for shape restoration, our
method learns anatomical variations and fracture patterns from a limited set
of intact and fractured samples by combining anatomical shape modeling and
fracture mode labeling.

An SSM is constructed for each bone type using Point2SSM++ as the back-
bone network [1]. This approach establishes point correspondences across dif-
ferent bone geometries and applies principal component analysis (PCA) to effi-
ciently model anatomical variability, enabling the generation of plausible bone
shapes. Fracture patterns are then modeled by assigning fracture labels to the
SSM based on clinical fractured data. Each SSM point is labeled according to
the spatial distribution of fracture fragments observed in real samples. To ensure
alignment between the SSM and fractured bones, shape deformation parame-
ters and spatial transformations are jointly optimized [21]. This process, applied
across multiple fractures, generates a diverse set of fracture modes within a uni-
fied coordinate system, forming the foundation for fracture synthesis.

Beyond the predefined fracture modes, additional variability is introduced
through extensive post-processing. As illustrated in Fig. 1d, fractured samples
are generated by sampling SSM shape parameters, applying a fracture mode,
and incorporating morphing and distortion. The morphing step adjusts the la-
bel distribution of adjacent fracture surfaces, while distortion, which includes
rotation, scaling, and shearing, alters the geometric structure to simulate irregu-
larity in fracture surfaces commonly observed in clinical data. Further variability
is introduced by randomly removing boundary regions to mimic missing shapes
as in locally comminuted fracture cases. Since fragments originate from intact
models without predefined interfaces, a mesh refinement algorithm [2] is em-
ployed to close open surfaces. The final fractured samples undergo randomized
pose adjustments, while the intact bone serves as the ground truth for training.
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3 Experiments and Results

3.1 Experimental Setup

Datasets We selected two of the most complex and challenging bone anatomies,
hipbone and sacrum, to test our method. From the CTPelvic1K dataset [9],
430 healthy hipbone and sacrum samples were selected. They were divided into
training and test sets in an 8:2 ratio for constructing the SSM. Additionally,
188 hipbone fracture cases and 52 sacrum fracture cases were selected from the
PENGWIN dataset [10]. Due to the scarcity of fractured data, they were split
in a 2:8 ratio, with 20% used for constructing the fracture modes in DFPM and
80% reserved for evaluation. In total, 191 real fracture samples were used for
testing, representing one of the largest fracture test datasets to date. Ground-
truth reduction poses were annotated by two clinical experts, each with more
than five years of surgical planning experience.

Baseline Methods We compared the proposed network model with several
fracture reduction planning methods, including average templates (Mean) [4],
statistical shape templates (SSM) [21], mirrored templates (Mirror) [26], and
fracture surface matching based on mirrored templates (Match) [8]. Due to their
reliance on the contralateral part, mirrored-template methods were restricted to
unilateral hipbone fractures only. For a fair comparison, unilateral and bilateral
hipbone fracture cases were tested separately in our experiments. Additionally, a
transformer-based point cloud generation method, AdaPoinTr [24], was included
as a learning-based baseline.

Evaluation Reduction accuracy was assessed using translational error (in mil-
limeter), defined as the Euclidean distance between the centers of reduced frag-
ments and their ground truth, and rotational error (in degree), defined as the
axis-angle difference between the planned and ground-truth pose matrices for
each fragment. Furthermore, the reconstructed shapes were evaluated using L2
Chamfer distance (CD) (scaled by 10−4) to the ground truth and part accuracy
(PA) with the latter thresholded τ at 0.001 to enhance sensitivity, following
established protocols [17].

Implementation The proposed network was implemented in PyTorch, with
an NVIDIA RTX 3070Ti GPU. The input point clouds of fractured bones were
initially downsampled to 2,048 points using FPS. Fragment labels were encoded
as one-hot vectors of seven dimension. The FAPE module generated 256 patch
tokens, each with 128 dimensions. And the transformer used 384 dimensions.
Reconstruction was performed at the coarse level with 256 points and the fine
level with 4,096 points. AdamW optimizer was used with an initial learning rate
of 10−4 and weight decay of 5 × 10−4, following a cosine annealing schedule.
The training spanned 300 epochs with a batch size of 20. The recursive process
allowed up to 10 iterations and used a convergence threshold ϵ of 1.
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Fig. 2. Example reduction planning results for hipbone and sacrum fractures.

Table 1. Quantitative results on reduction planning for hipbone and sacrum fractures.

Method
Unilateral hipbone (76) Bilateral hipbone (74) Sacrum (41)

Rot.↓ Trans.↓ CD ↓ PA↑ Rot.↓ Trans.↓ CD ↓ PA↑ Rot.↓ Trans.↓ CD ↓ PA↑
Mean [4] 6.07 5.25 6.51 67.43 7.48 5.89 8.20 61.26 6.57 3.65 9.90 56.91
SSM [21] 5.74 4.69 5.67 74.56 6.74 5.29 7.08 62.61 6.19 3.60 9.74 60.57

Mirror [26] 5.18 3.01 3.10 89.80 – – – – – – – –
Matching [8] 6.40 3.08 4.74 87.17 – – – – – – – –

AdaPoinTr [24] 5.08 3.04 2.85 91.89 6.24 3.16 3.27 90.77 5.74 2.44 6.38 78.05
Our method 4.46 2.35 2.04 97.04 4.57 2.51 1.79 95.72 4.63 2.04 4.73 82.11

For data simulation, SSMs were constructed separately for the hipbone and
sacrum using 344 samples, each with 38 and 11 fracture modes, respectively.
Each bone had 20,000 synthesized samples, with random translation up to 15
mm and rotation up to 30◦ applied at each training iteration. The demonstration
of data simulation is provided in the Supplementary Material. The training code
and sample data are available at https://github.com/Sutuk/FracFormer.

3.2 Comparison of Reduction Planning Methods

The performance of our method was evaluated on unilateral hipbone fractures,
bilateral hipbone fractures, and sacrum fractures. Results in Fig. 2 and Table 1
show that our method outperformed all baseline methods across all fracture
types. Mirrored-template methods achieved competitive results due to their re-
liance on a contralateral healthy template, however, inherent anatomical asym-
metries often led to significant remaining errors, especially in complex fracture
configurations. Fracture surface matching lacks robustness due to its inability
to accurately identify and align fracture surfaces. Mean templates and statis-
tical shape templates, though applicable to all cases, struggled with individual
variability and parameter optimization, leading to suboptimal performance. Ada-
PoinTr, which was also trained using the synthesized fracture dataset, outper-
formed the non-learning methods. Paired t-test indicated that the improvements
provided by our method is statistical significant, with p < 0.05 across all metrics.

https://github.com/Sutuk/FracFormer
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Table 2. Ablation study results. The left section evaluates different network compo-
nents, while the right section examines variations in data simulation.

(a) Network Model Ablation (b) Data Simulation Ablation

Method Rot.↓ Trans.↓ CD↓ PA↑ Method Rot.↓ Trans.↓ CD↓ PA↑

w/o FAPE 5.22 2.52 2.14 95.50 w/o surface 5.34 3.20 2.93 90.33
w/o label 4.86 2.43 2.54 95.61 w/o morph. 5.17 2.56 2.06 94.89
w/o recursion 5.30 2.54 2.73 95.72 w/o distort. 5.30 2.79 2.31 95.00
Our method 4.51 2.43 1.92 96.39 Our method 4.51 2.43 1.92 96.39

Our method achieved 2.34 mm translation and 4.54° rotation errors, well within
clinically accepted thresholds for fracture reduction [18].

3.3 Ablative Experiment

The contributions of the network and data simulation components were analyzed
in an ablative study on the hipbone dataset. As shown in Table 2, replacing
the FAPE with standard unified encoding resulted in significant performance
degradation, highlighting its importance for fragment shape and pose differenti-
ation. The incorporation of fracture label embedding expedited convergence and
ensured reconstruction consistency. And removing the recursive strategy signif-
icantly reduced alignment accuracy, underscoring its role in refining fragment
poses. For fractured data generation, removing key techniques such as fracture
surface generation, fragment morphing, and distortion led to noticeable drops
in simulation quality. Fracture surface generation introduced critical variations,
while distortion modeling captured clinically relevant misalignments. Morphing
fracture areas increased data diversity, further boosting model robustness.

4 Discussion and Conclusion

We present an integrated approach for realistic fracture simulation and robust
reduction planning, addressing the challenges of learning fracture-specific fea-
tures and the scarcity of training data. Our transformer-based network leverages
fracture-aware encoding, enabling accurate and generalizable fracture reduction,
even in complex cases such as bilateral and sacrum fractures. To generate diverse
and realistic synthetic fractures, our approach learns clinical fracture patterns
from limited samples. This sim-to-real strategy enables the training of robust
models without the need for extensive real fracture datasets. Additionally, by
incorporating recursive inference and registration, our method achieves precise
alignment and resilience against large displacements.

Extensive experiments demonstrate the superiority of our approach over tra-
ditional and learning-based methods, showing significant improvements in plan-
ning accuracy. Ablation studies further validate the contributions of individual
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components in both the reduction planning framework and the fracture data gen-
eration process. Additionally, our method achieved an average runtime of 1.45
seconds, a significant improvement over 42 minutes in the SSM-based method [7].

Since direct statistical modeling of fracture patterns in a latent space is chal-
lenging, we instead map clinical fractures onto simulated anatomies and intro-
duce further variations. Preliminary results confirm the robustness and general-
izability of this approach, with training on a limited number of fracture modes
(38 for the hipbone and 11 for the sacrum) proving sufficient to infer unseen
fracture patterns. However, failure cases still occur when fragments lack dis-
tinct geometric features, hindering accurate alignment. Future work will explore
semantic-aware reconstruction to enhance fragment alignment, and validate the
generalizability to irregular fractures and other anatomies.
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