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Abstract. Cervical cancer is the only cancer that can be eliminated, yet
it causes over 300,000 deaths annually. Early detection of its precancerous
lesions can significantly reduce both incidence and mortality rates, while
the process is labor-intensive and demands highly trained professionals.
The application of artificial intelligence for cervical cell detection shows
great promise but frequently encounters challenges such as limited data
scale and class imbalance, stemming from the difficulties associated with
expert annotation and the diverse types of cervical cells. To address this,
current studies tend to design advanced detection models, while little at-
tention is given to the potential improvements of data augmentation. In
this work, we innovatively present the first controllable image synthesis
workflow with adaptive cell segmentation and style transfer to synthe-
size realistic cervical cell images with bounding box annotations. Specifi-
cally, an adaptive cell segmentation method was introduced to cut target
cells of varying sizes and morphologies from real images. These cells are
then controllably pasted onto blank backgrounds to synthesize coarse im-
ages, which were further refined to realistic ones through the style trans-
fer approach. The extensive experiment on a private long-tailed dataset
demonstrated that our proposed workflow can generate realistic cervical
cell images, thereby enhancing model training and improving the perfor-
mance of cervical cell detection, generally and categorically. The code is
available at https://github.com/huyihuang/ImageSynthesisForCCD.

Keywords: Cervical Cell Detection · Controllable Image Synthesis ·
Adaptive Cell Segmentation · Style Transfer.

1 Introduction

Cervical cancer is the fourth most common cancer in women worldwide, with
more than 300,000 deaths annually [22]. Meanwhile, it is the only cancer that can
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be eliminated worldwide [24], the precancerous lesions of which can be detected
in the early stages. Screening methods like the Pap test and liquid-based cytology
(LBC) are effective and widely used for detection while requiring highly trained
expertise to accurately interpret abnormal cervical cells [2]. This dependence
not only increases the workload of expertise but also leads to delayed diagnoses
and reduced efficiency in large-scale screening efforts, particularly in resource-
limited settings. Therefore, there is a growing interest in incorporating artificial
intelligence into cervical cell detection.

Cervical cell detection is a challenging task due to its inherent complexities,
such as the diversity of abnormal cells with different sizes, their morphological
similarity to normal cells or each other, and the heterogeneity within each cell
class [14]. Current research tends to design advanced models to achieve more
accurate automated detection [4,9,21,12,25,6]. In addition to advanced models,
high-quality and sufficiently large-scale data are also widely considered crucial for
the detection task. However, the challenges associated with annotation and the
wide types of abnormal cells make it difficult to construct large-scale datasets.
Hence, the cervical cell data are typically small-scale and exhibit a long-tailed
distribution, which exacerbates the training of detection models [13]. To im-
prove data diversity, some studies have explored the use of GAN-based methods
to synthesize cervical cell images [26,19,29] or individual cells [28,18] under given
labels, demonstrating effectiveness in supporting image classification tasks. How-
ever, most of these methods primarily focus on the overall visual appearance,
while the fidelity of fine cellular details and the morphological diversity of the
synthesized images or individual cells remain insufficiently validated. In addition,
these approaches often lack effective control over the morphology and spatial ar-
rangement of individual cells, making it challenging to meet the requirements of
more complex detection or segmentation tasks.

Unlike GAN-based methods, CutPaste synthesizes new images by leveraging
individual real instances, which was proposed [3] and showed success in natural
image domains [3,23,11]. Specifically, CutPaste involves cutting a region of in-
terest from an image and pasting it onto another image in a different context
to synthesize data for augmenting model training. In recent years, researchers
have successfully adapted CutPaste to various medical imaging domains. Yap et
al. [27] proposed a simple semi-supervised learning method for lesion segmenta-
tion using CutPaste augmentation and consistency regularization, demonstrat-
ing superior performance on eye fundus and brain CT scan datasets. Athalye et
al. [1] demonstrated the effectiveness of a context-preserving CutPaste data aug-
mentation strategy for view classification on fetal ultrasound FETAL-125 and
OB-125 datasets. Sato et al. [17] introduced a self-supervised learning model
utilizing an anatomy-aware pasting (AnatPaste) augmentation tool for unsuper-
vised anomaly detection in chest radiographs.

However, to our knowledge, few studies have applied CutPaste to enhance
cervical cell detection. Given that cells in screening images of the Pap test or
LBC are generally isolated and independent, CutPaste could also potentially
improve cervical cell detection. In this work, we proposed the first controllable
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image synthesis workflow with adaptive cell segmentation and style transfer for
cervical cell detection, which mainly consists of three stages. Stage 1: Adaptive
cell segmentation method, based on a well-pretrained cell segmentation model, is
designed to cut target cervical cells of varying sizes and morphologies from real
images. Stage 2: The cut cells are controllably placed onto blank backgrounds
to generate coarse images, the process of which allows for precise manipulation of
the cell placement and orientation. Stage 3: The style transfer model is trained
with coarse images as the source domain and real images as the target domain.
Then, it is applied to transfer coarse images into refined ones. In summary, the
main contributions of this work are listed as follows:

(1) We proposed an innovative, controllable image synthesis workflow with
adaptive cell segmentation and style transfer for cervical cell detection. To our
knowledge, this is the first approach to enhance cervical cell detection from a
data synthesis perspective.

(2) We proposed an adaptive segmentation method to effectively cut cervical
cells of varying sizes and morphologies. Besides, we leveraged the style transfer
approach to eliminate stitching artifacts and generate more realistic images.

(3) Through extensive experiments, we demonstrated that our proposed work-
flow can controllably generate realistic cervical cell images, which are effective
for augmenting model training and improving cervical cell detection.

2 Method

2.1 Adaptive Cell Segmentation

The precise segmentation of cervical cells with varying sizes and morphologies
from real images is a critical prerequisite for coarse image synthesis. Even though
there is no dedicated pretrained segmentation model for cervical cells, we noticed
the existence of well-pretrained segmentation models [20,5,7] for other types of
cells. Among them, we identified CellPose [20] as a promising solution, requiring
a suitable cell diameter as input. On this basis, we first cut sub-images slightly
larger than the labeled bounding box to ensure including the whole cells in real
images, as shown in Fig. 1(a). Then, the sub-image is inputted to CellPose with
an adaptive cell diameter (denoted as d), as shown in Fig. 1(a). Furthermore,
cervical cell images inevitably present overlapping cells at times, which may lead
to additional segmentation of cells within the sub-image, as shown in Fig. 1(a).
Therefore, we applied an intersection over union (IoU) check to ensure accurate
segmentation, as shown in Fig. 1(a). After that, we cut the target cells from real
images and refresh the labeled bounding box by cell size. Additionally, due to
limitations in computational resources, the whole slide image is typically split
into patches, resulting in several cervical cells being split across different patches.
Hence, we further classified cut cells into internal and boundary cells based on
their position in patches, as shown in Fig. 1(b).
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Fig. 1. Overview of our proposed controllable image synthesis workflow.

2.2 Coarse Image Synthesis

The cut cells are then pasted onto blank backgrounds of the same size as the
real image to generate coarse synthetic images. It is worth noting that internal
cells can be arbitrarily rotated and pasted within the coarse image, while the
placement of boundary cells is restricted to simulate real scenarios, as shown
in Fig. 1(c). In addition, the normal cell is also cut and distributed around the
abnormal cell in coarse images to simulate the real scenario.

2.3 Refined Image Synthesis

When cells are directly pasted onto blank backgrounds, the edges of the cells
often exhibit stitching artifacts, and the backgrounds of coarse images differ
significantly from those of real images. These issues can potentially degrade
the training of detection models [3]. We identified style transfer learning as a
promising solution due to its impressive performance [30,15]. Specifically, the
style transfer model is trained with coarse images as the source domain and real
images as the target domain. After that, it is applied to refine coarse images
with its learned transformation, smoothing out cell boundaries and replacing
the unrealistic background with a natural one. Through the process above, we
have established a pipeline for controllable image synthesis to generate realistic
cervical cell images and corresponding annotations based on real detection data.



Image Synthesis for Cervical Cell Detection 5

3 Experiments

3.1 Dataset and Evaluation Metrics

Public cervical cancer datasets [8,16] are limited in size and balanced in cate-
gories, not accurately representing real-world clinical distributions. Therefore,
we obtained a private cervical cell dataset closer to the real long-tailed data, as
shown in Table 1. Specifically, it contains 11748 images with 512*512 resolution
and annotates 9 types of cells, including normal cells and 8 kinds of abnormal
cells. As shown in Table 1, the dataset was divided into train (10,331 images),
val (612 images), and test (805 images) sets. It should be noted that the train
and val sets are created through overlap-cropping, while the test set remains in-
dependent for evaluation. The dataset is available on request for non-commercial
and academic purposes from the author (hswu@szu.edu.cn).

Table 1. Details of the private cervical cell dataset.

Class HSIL Atrophy SCC
Bare Tricho-

LSIL ASC-US ASC-H NormalNucleus -monad

train
images 3339 1349 1658 1572 842 819 770 151 4521

instances 6019 2696 2237 2095 1742 1089 851 187 10157

val
images 216 144 37 122 73 29 26 4 348

instances 300 258 43 162 84 29 26 4 1066

test
images 252 150 52 112 82 93 64 14 454

instances 331 299 60 138 123 95 69 14 1350

For detection assessment, we adopted mean average precision (mAP) with
an IoU threshold of 0.5 and mAP across multiple IoU thresholds (from 0.5 to
0.95), commonly referred to as mAP50-95, as the evaluation metrics, along with
their values for each detected class.

3.2 Implementation Details

Adaptive Cell Segmentation. The sub-image is cropped to twice the dimen-
sions of the corresponding bounding box while keeping the center of the box
unchanged. The adaptive diameter is given by the minimum of the bounding
box’s width and height, which is simple yet proven effective. The IoU threshold
for checking additional cells is set to 0.5. The cut cells are only from the train
and val sets of the private dataset.
Coarse Image Synthesis. In each coarse image, only one type of abnormal
cell (1-2 cells) is included, along with several normal cells (0-5 cells), to simulate
real scenarios. During the placement, an IoU check with a threshold of 0.2 is also
applied to ensure different pasted cells do not overlap with each other excessively.
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Refined Image Synthesis. We synthesized 1,000 images for each type of ab-
normal cell as the source domain. 10,331 images from the train set were utilized
as the target domain to train the style transfer models, including CycleGAN [30]
and CUT/FastCUT [15]. The total number of training epochs was set to 100,
with the learning rate remaining constant during the first half of the epochs and
gradually decreasing to zero in the second half.
Detection Models. Since the code of cervical cell detection research is not
publicly available [4,9,21,12,25,6], we conducted experiments by YOLOv11x and
YOLOv11n, the largest and smallest models in the YOLOv11 detection se-
ries [10]. All models were initialized with the officially provided pretrained weights
and then, trained for 200 epochs with a batch size of 64. All experiments were
carried out on NVIDIA GeForce RTX 4090.

3.3 Results of Cell Segmentation and Style Transfer

Cell Segmentation Results. The cell segmentation results of different meth-
ods are shown in Fig. 2, with the segmentation boundaries indicated by green
contours. The red boxes highlight the bounding boxes of the target cells. It
can be observed that Hover-net [5] primarily segments cell nuclei, but fails to
capture the full structure. Cellvit [7] is almost unable to segment relevant fea-
tures. CellPose with a default cell diameter struggles with cells that vary in
size. Our adaptive method overcomes these limitations by using a dynamic di-
ameter, providing effective segmentation across various cells. Quantitatively, our
approach achieves an average IoU of 0.758 between approximately 25,000 seg-
mented cells and their annotated bounding boxes, outperforming other methods
(IoU < 0.617). When using an IoU threshold of 0.5, our method achieves a cell
hit rate of 93 %, much higher than other methods (hit rate < 72 %).

Fig. 2. cell segmentation results of different methods (green contours). Red boxes rep-
resent target cells’ bounding boxes. (a) Hover-net, (b) Cellvit, (c) CellPose, (d) Ours.
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Style Transfer Results. CycleGAN and CUT/FastCUT are widely recognized
models for style transfer, each with its unique approach. We chose CUT as
an example because its contrastive loss-based approach potentially results in
better preservation of fine details, the style transfer results of which are shown
in Fig. 3. As observed, trained CUT effectively eliminates cell stitching artifacts
and improves the background of coarse images, generating more realistic images.

Fig. 3. The style transfer results of CUT. (a) Coarse images, (b) Refined images.

3.4 Results of Detection

To distinguish the training data for the style transfer model, we regenerated 1,000
coarse images for each type of abnormal cell and input them into the trained
style transfer model to synthesize refined images for the detection experiment.
Overall Performance Analysis. We assigned the training of different mod-
els by the train set as the baseline. On this basis, we adopted a simple mixing
strategy by adding the same number of synthetic images for each class of ab-
normal cell to the train set for data augmentation. Table 2 shows the results of
YOLOv11n and YOLOv11x with varying numbers of images per class (denoted
as num_per_class) and style transfer models. As observed in Table 2, incor-
porating refined images generated by our proposed workflow achieved better
mAP50 and mAP50-95 compared to the baseline. Furthermore, incorporating
coarse images typically resulted in smaller improvements than those of refined
images in most cases. This further underscores the effectiveness of our proposed
workflow and highlights the importance of synthetic data and realistic image
generation for cervical cell detection.
Class Performance Analysis. We conducted a class performance analysis to
clarify the impact of synthetic data on different categories of abnormal cells. We
presented examples with YOLOv11n and CUT, illustrating two scenarios with
num_per_class set at 250 and 1000, as shown in Table 3. With num_per_class
equal to 250, the enhancement in head categories was minimal. However, for tail
categories, such as ASC-H, there was a noticeable improvement. This is because
even 250 images could provide significant augmentation for the limited training
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Table 2. Results of overall performance analysis based on YOLOv11n and YOLOv11x.
The best values are highlighted.

mAP50 mAP50-95

num_per_class 250 500 750 1000 250 500 750 1000

YOLOv11n

baseline 0.433 0.433 0.433 0.433 0.326 0.326 0.326 0.326
w/ coarse 0.428 0.452 0.451 0.463 0.320 0.338 0.335 0.344

w/ refined (CycleGAN) 0.450 0.455 0.452 0.439 0.333 0.342 0.337 0.328
w/ refined (FastCUT) 0.453 0.448 0.471 0.455 0.337 0.333 0.352 0.333

w/ refined (CUT) 0.429 0.458 0.448 0.481 0.321 0.340 0.338 0.356

YOLOv11x

baseline 0.462 0.462 0.462 0.462 0.350 0.350 0.350 0.350
w/ coarse 0.470 0.464 0.461 0.481 0.354 0.348 0.349 0.363

w/ refined (CycleGAN) 0.480 0.448 0.477 0.472 0.353 0.339 0.363 0.368
w/ refined (FastCUT) 0.460 0.487 0.487 0.488 0.346 0.367 0.364 0.364

w/ refined (CUT) 0.489 0.468 0.471 0.483 0.370 0.354 0.357 0.368

Table 3. Results of class performance analysis based on YOLOv11n and CUT. The
best values are highlighted.

Metrics Train Data HSIL Atrophy SCC
Bare Tricho-

LSIL ASC-US ASC-H allNucleus -monad

numer of images per class = 250

mAP50
baseline 0.462 0.939 0.147 0.729 0.226 0.695 0.203 0.063 0.433

w/ coarse 0.462 0.942 0.087 0.691 0.281 0.639 0.232 0.091 0.428
w/ refined 0.430 0.935 0.144 0.706 0.165 0.683 0.227 0.139 0.429

mAP50-95
baseline 0.329 0.794 0.117 0.512 0.150 0.518 0.141 0.049 0.326

w/ coarse 0.327 0.803 0.073 0.484 0.193 0.459 0.147 0.072 0.320
w/ refined 0.302 0.798 0.110 0.493 0.124 0.490 0.146 0.109 0.321

numer of images per class = 1000

mAP50
baseline 0.462 0.939 0.147 0.729 0.226 0.695 0.203 0.063 0.433

w/ coarse 0.458 0.940 0.096 0.703 0.464 0.689 0.227 0.129 0.463
w/ refined 0.499 0.934 0.215 0.743 0.374 0.710 0.257 0.118 0.481

mAP50-95
baseline 0.329 0.794 0.117 0.512 0.150 0.518 0.141 0.049 0.326

w/ coarse 0.324 0.800 0.068 0.493 0.293 0.519 0.155 0.101 0.344
w/ refined 0.352 0.795 0.156 0.520 0.258 0.522 0.162 0.082 0.356
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data of tail categories. When the volume of added data is sufficiently high, as
in the case of num_per_class equal to 1000, synthetic data improved detection
metrics for nearly all categories, with refined images typically yielding greater
enhancements than coarse images, leading to significant improvements in mAP50
and mAP50-95 over the baseline. This further demonstrates the effectiveness of
our proposed workflow, highlighting its potential to address challenges related
to limited data and class imbalance.

4 Conclusion

In conclusion, this work introduces an innovative and controllable image syn-
thesis workflow for enhancing cervical cell detection. It specifically combines an
adaptive cell segmentation method to cut various cervical cells of differing sizes
and morphologies, and the style transfer approach to eliminate stitching arti-
facts, thereby generating realistic cervical cell images with bounding box anno-
tations. The results of overall and class performance demonstrate its effectiveness
in improving cervical cell detection through data augmentation, highlighting its
potential to address challenges such as limited data scale and class imbalance.
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