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Abstract. Multimodal neuroimaging grounded in standardized brain
atlases enables precise decoding of Alzheimer’s progression by captur-
ing both structural atrophy and functional decline across neural circuits.
Current methods compromise anatomical fidelity in whole-brain mod-
eling while generating biologically inconsistent cross-modal interactions.
To address these dual challenges, we develop a graph learning framework
that integrates three synergistic components: anatomically constrained
feature extraction preserving region-specific biomarkers through spatial
priors, channel-wise attention mechanisms for discriminative pattern re-
finement, and bidirectional cross-modal adaptation governed by alter-
nating attention to enforce neuropathological consistency. This unified
architecture processes sSMRI and PET data through sequential stages of
anatomical feature preservation, noise-robust feature enhancement, and
dynamic modality fusion, ultimately mapping neurodegeneration pat-
terns across scales. Evaluated on ADNI, our framework achieves superior
classification accuracy while graph topology analysis reveals clinically
significant hub reorganization within the default mode network, directly
correlating with progressive connectivity deterioration. The method’s ca-
pacity to reconcile localized biomarker specificity with systemic network
dynamics establishes new standards for computational neuropathology.

Keywords: Alzheimer’s disease - Graph Neural Networks - Anatomy
Guided Learning - Brain Network Analysis - Multimodal Graph Learn-
ing.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by pro-
gressive structural degradation, such as cortical thinning and white matter rar-
efaction, leading to widespread functional and structural impairments within
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interconnected neural networks [1][2]. AD pathogenesis is not confined to spe-
cific regions but affects multifocal brain areas, disrupting their functional and
structural integrity [3][27]. Understanding how these changes manifest across
anatomical structures is crucial, with brain imaging offering a valuable window
into the spatiotemporal progression of neurodegeneration [8][23][24]. Crucially,
AD follows axonal connectivity patterns rather than anatomical boundaries,
highlighting the need for neuroimaging approaches that capture functional re-
configuration and the evolution of brain network dynamics over time [28][26].
Analyzing brain region features for AD progression faces several challenges:
(1) capturing pathological changes while preserving spatial structure, such as
distinguishing hippocampal atrophy from nearby areas [8]; (2) modeling com-
plex spatial and functional dependencies among regions [9]; and (3) integrating
multimodal data like sMRI and PET, which vary in resolution, signal type,
and scale [10]. High-dimensional features also risk redundancy and overfitting,
requiring mechanisms to enhance relevance and interpretability. Graph-based
models (e.g., BrainMAE [7]) capture inter-regional relations and are commonly
used for functional connectivity, though recent studies have extended them to
structural and morphometric similarity networks as well, region-based methods
(e.g., Zuo et al. These limitations point to the need for approaches that retain
detailed structure while modeling inter-regional relationships. These limitations
point to the need for approaches that retain detailed structure while modeling
inter-regional relationships. To this end, we propose a multimodal graph learning
framework with three components: (1) anatomy-guided feature extraction from
sMRI and PET to capture clinical biomarkers; (2) channel-wise feature enhance-
ment to emphasize discriminative patterns; and (3) dynamic cross-modal fusion
to integrate complementary features and reorganize inter-region representations.
This tripartite architecture integrates spatial, structural, and functional in-
sights to enhance AD classification and progression modeling. Evaluated on
the ADNI cohort, our framework achieves superior diagnostic accuracy through
anatomically constrained multimodal fusion. Comparative and ablation studies
demonstrate biologically plausible feature integration with enhanced stability
via adaptive modality synergy. Graph topology analysis reveals neurodegener-
ative mechanisms through memory-critical hub reorganization in hippocampal-
entorhinal and olfactory pathways, uncovering the transition from localized com-
pensation to global network collapse directly linked to clinical memory decline.
Our primary contributions can be summarized as follows:

— Anatomy-guided Feature Extraction: Utilizes clinically validated brain
parcellation atlases for extracting region-specific biomarkers, such as hip-
pocampal volume and amyloid burden derived from amyloid-PET imaging..

— Channel-wise Feature Enhancement: Implements a module to refine
important features at the channel level, reducing irrelevant noise and im-
proving model interpretability.

— Dynamic Cross-modal Fusion: Introduces the Cross-Graph Co-Attention
(CGCA) mechanism to adaptively combine structural sMRI and PET data,
enhancing the representation of neurodegeneration stages.
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Fig. 1. Overview of our framework, integrating sMRI and PET via graph-based feature
extraction and cross-modal co-attention for AD classification.

2 Methodology

2.1 Preliminaries

Graph convolutional networks (GCNs)[12] update node features by aggregat-
ing information from connected neighbors, a process mathematically expressed
through neighborhood propagation rules. In a typical graph convolutional frame-
work, node features x are updated via neighborhood aggregation using an adja-
cency matrix A and a degree matrix D. Capturing interactions between brain
regions is essential for understanding network-level disruptions in AD.To capture
disease-relevant covariation patterns reflecting synchronized degeneration across
brain regions, our Volume-Based Graph Builder (VBGB) quantifies structural
covariance directly from imaging data using relative volume similarity. For each
combination of imaging modality m € {sMRI,PET} and diagnostic contrast
group ¢ € {AD vs. CN, AD vs. MCI, MCI vs. CN}, We compute pairwise Eu-
clidean distances between N = 90 brain regions’ normalized volume vectors
Vz(m’c), defined as below.The adjacency matrix A(™¢) € {0,1}V*¥ is then spar-
sified via k-nearest neighbors (k-NN)[13].

Al 1, if j € TopK(D{™, k),

3 = 1
2 * {0, otherwise. )

B(m,c) _ ’ vgm,c) . V](.m’c) 2

vJ

where closer Euclidean distances indicate stronger volumetric covariation.
This generates six distinct graphs {G(m’c) }, encoding modality and disease stage-
specific structural covariance patterns critical for early network-level pathology
detection.
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Overview of Our Method: To overcome the anatomical distortions in tra-
ditional multimodal fusion, this study constructs an anatomically constrained
graph neural network framework. Using the AAL atlas[14], sMRI and PET data
are precisely mapped to 90 functional brain regions, while a lightweight 3D
CNN]15] extracts regional features . To eliminate individual differences, relative
volume correction is introduced. An anatomy-driven sparse graph construction
strategy retains only region-to-region associations consistent with structural co-
variance patterns, effectively reducing non-physiological connection noise. The
core innovation lies in a dynamic fusion mechanism within anatomical units—the
CGCA module, which, based on AD pathology stages, calculates mutual infor-
mation between sMRI/PET nodes within specific functional systems and dy-
namically adjusts cross-modal weights, thereby enhancing multimodal feature
integration in key regions such as the hippocampus and entorhinal cortex.

2.2 Anatomical Brain Region Recoding

Anatomical Brain Region,,.: To link neuroimaging data with region-specific
biomarkers for brain disorders, we develop a feature-encoding framework that
ensures anatomical consistency across subjects. Our pipeline applies affine reg-
istration, intensity normalization, and region extraction using a standardized
atlas. Each brain region is zero-padded, spatially normalized, and reshaped into
a uniform 3D representation.We extract isotropic 323 voxel blocks from 90 cor-
tical and subcortical regions in the AAL[14] atlas. To reduce boundary artifacts,
mirror padding is applied. The extracted regions are processed by a lightweight

3D-CNN [15] to encode morphological and metabolic differences. We further

211 vj + e) , to
model inter-regional volumetric relationships. The fused feature vector x; € R?!4
captures both local tissue properties and global structural patterns , providing

a neuroanatomically informed basis for disease characterization.

%

compute absolute volume v2"* and relative volume vi® = v;/ <Z

2.3 Anatomy-Aware Graph Learning Framework

Adaptive Channel-wise Graph Refinement: After building brain region
graphs, we develop a dynamic graph refinement method(shown in Fig.2). Tradi-
tional approaches using fixed or random connections often miss complex inter-
region relationships[12]. Our method combines actual anatomical connections
with learnable weights, maintaining structural plausibility . The key component
is a learnable shared topology T € RV*N | constructed based on brain region
volume ratios to dynamically optimize the connectivity graph. Unlike conven-
tional methods that randomly generate connections, we incorporate anatomical
priors to impose biologically meaningful connectivity patterns. The refinement
employs two complementary functions : F; models channel-wise relationships ,
while F5 enhances feature distinctiveness by extracting discriminative patterns.

F1(zi,25) = a(X - tanh(p1(z;) — p2(7;))) @ T (2)
Fa(v;,2;) = MLP(¢1(2:) © p2(z5)) (3)
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We use two dimension reducers (1, p2) to reduce computational complexity.
Learnable weights o € R adjust channel importance, while A\ enhances fea-
ture contrasts through linear transformations. The fused topology is formulated
as M’ = (o ® M) x T where a scales channels, and T enforces anatomical

constraints. Each channel’s features are refined via Z]mz,l B(m; ® x;) and then
aggregated into the final output. This adaptive convolution dynamically refines
graphs per sample while preserving brain structural integrity, outperforming
fixed methods in both accuracy and efficiency.
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Fig. 2. ACGR: A dynamic brain network model integrating anatomical priors and
task-specific functions through dual-path graph generation and fusion.

Cross-graph co-attention process: Existing multimodal fusion methods
often overlook anatomical constraints, leading to biologically implausible feature
mixing. Since brain regions are fundamental functional units, preserving their
spatial relationships is essential. To address this, the CGCA module jointly re-
fines node features and graph topology through dual-path collaborative learning,
as detailed in Algorithm 1. Given a primary modality M; (with n; nodes and
d-dimensional features) and an auxiliary modality My (with ne nodes and d-
dimensional features), we first establish cross-modal associations via:

<G17G2>
1G1l 7 |Gzl

where MI(-) quantifies mutual information, and G1, Gg € R%°*9 are topology
matrices encoding structural embeddings. Attention weights are assigned as:

el-j = /8 . —MI(TL;\/II,TL;\/I2), 6/ = B .

(4)

_ exp(e;;)
222:1 exp(eir) ’

Since cosine similarity is inherently normalized, b;; propagates topological rela-

tionships, enabling simultaneous feature aggregation and topology refinement:

bij = 6/ (5)

aij

nao

Ms _ M2 — b

n;? = g aijn;®, Gz = by x G, (6)
i=1

The fused modality M3 integrates the updated features as Mg = [n™* @ nMz],
which is then processed by a dynamic GNN [16] with learnable adjacency ma-
trices. Bidirectional fusion further refines representations by swapping My /Ma
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roles, yielding enhanced feature-topology pairs {FM: AM:i} and {FM2 AMz1

CGCA’s co-optimization of features and topology effectively mitigates semantic-
structural misalignment in cross-modal medical imaging analysis.

Algorithm 1 CGCA Fusion Process
Input: M;: Ny € RY9%256 A ¢ RI0X90 . pr, N, € RIOX256 A, ¢ RI0OX90
Output: Mlmt: Nunt € R!N}x‘l.’r(iy Auut € RGJIIX()()
Stage 1: Cross-modal Correlation Learning
1: for i =1 to 90 do
for 7 =1 to 90 do
Node correlation: e;; ¢ - exp(—M1(N1[i], N2[j]))
Edge correlation: (::J — - cos(Aq[t], Az[j])
end for

Node attention: a; + Softmax([e;1, ..., €io0])

Edge attention: b; « Softmax([e},, ..., €jgq])

8: end for

Stage 2: Intermediate Modality Generation

1: for i =1 to 90 do vi = T2 ai; - Na[j]

2: end for

Stage 3: Modality Aggregation

I Apew ¢ A1OB  Npig ¢ [v]5.5vg] T

2: Nout — MLl’([Nl D Nmid]) Aout « DGCN(Apew, Nout) return Noue, Agut

3 Experiments

In our study, the ADNI dataset was utilised, which comprised 1,114 subjects
across three diagnostic groups: 290 AD, 506 MCI, and 318 NC. The dataset under
consideration encompasses sMRI and amyloid PET data. sMRI data underwent
preprocessing using SPM12 and CAT12, a process that entailed steps such as
denoising, bias correction, spatial normalisation, and grey matter segmentation.
The data were then separated into two sets: a training set and a test set (in a
ratio of 8:2). This was achieved using a fixed random seed, with subject ID-based
partitioning in order to prevent data leakage.

3.1 Comparative Experiment

Current neuroimaging methods for AD often suffer from anatomically implau-
sible cross-modality fusion, undermining biological plausibility. Patch-based ap-
proaches[5] mechanically combine MRI/PET features from arbitrary image par-
titions, leading to non-anatomical mixing. Global methods avoid this by reducing
regions to scalar metrics but lose spatial granularity. Our anatomy-guided fusion
resolves both issues by aligning SMRI/PET features within anatomical bound-
aries, enabling meaningful cross-modal interactions and enhancing hippocampal-
entorhinal specificity. Moreover, our dynamic weighting mechanism adaptively
captures AD-specific multimodal disruptions while reducing performance vari-
ability. These findings support a core hypothesis: fusion should respect neu-
roanatomical structure rather than rely on biologically agnostic feature aggre-
gation.
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Table 1. Performance Comparison for Classification Tasks.

Method AD vs. CN MCI vs. CN AD vs. MCI
ACC(%)  AUC(%) F1(%) ACC(%) AUC(%) F1(%) ACC(%)  AUC(%) F1(%)

ResNet3D[17]  90.46+3.12  94.68+0.29 91.72+3.00 69.47+1.32 73.31+3.77 60.69+9.58 79.85+3.42 85.36+4.01 84.82+2.77
Att3D[18] 87.70+3.04 91.38+3.41 88.08+2.74 69.17+3.80 69.83+2.72 64.02+2.04 78.15+2.54 83.23+2.94 83.34+2.54
Senet[19] 88.92+3.64 92.53+3.50 88.71+3.55 70.72+1.92 69.00+4.87 60.27+9.37 80.48+2.09 86.52+3.15 85.10+1.81
BrainBagNet[5] 83.80+2.84 91.13+2.16 85.24+1.86 67.67+3.92 69.88+6.35 59.04+5.43 76.99+3.55 81.51+3.54 82.62+2.98
Zuo et al.[6] 89.16+2.71  93.23+1.93 85.09+5.41 69.46+2.99 66.66+5.76 64.92+6.94 T78.48+1.41 82.92+3.71 83.42+1.96
BrainMAE([7] 91.56+2.94 94.714+1.94 84.47+8.07 70.45+2.92 73.33+4.58 63.46+2.94 79.85+3.42 85.36+4.01 84.8242.77
Ours 95.23+2.25 97.77+1.53 95.48+2.12 74.65+5.35 76.93+6.53 65.68+8.58 83.29+2.38 88.58+1.57 87.16+1.73

3.2 Ablation Study

Progressive Module Validation: The baseline model showed limited per-
formance in classification. Incorporating anatomical constraints(ABRE) signifi-
cantly improved AD classification and enhanced MCI classification stability. Further
introducing dynamic graph refinement(ACGR) boosted ADvs.MCI differentia-
tion but introduced fluctuations in early MCI detection.The optimal configura-
tion(ABRE+CGCA) achieved the highest stability in AD classification, while
the full model leveraged cross-modal synergy for comprehensive optimization.
Multimodal Synergy. sMRI performed best in AD detection, whereas PET ex-
celled in early MCI identification. Dual-modal fusion significantly enhanced clas-
sification performance, achieving peak AD detection while reducing cross-modal
noise interference.However, increased variance in MCI classification suggests the
need for adaptive fusion strategies to address early-stage heterogeneity.

Table 2. Validating Model Components: Ablation Study

Module AD vs. CN MCI vs. CN AD vs. MCI
ABRE ACGR CGCA ACC AUC ACC AUC ACC AUC
88.31+4.10 88.38+5.22 67.68+2.98 69.72+5.38 79.85+2.36 84.7443.65
v 89.2244.18 93.24+3.56 68.97+3.49 70.964+4.67 80.99+2.15 84.23+4.06
v v 90.18+3.23 94.204+2.10 69.50+3.47 70.34+6.24 80.92+2.63 86.5643.47
v v 93.694+1.97 96.25+1.84 71.66+2.45 73.354+4.65 81.53+2.93 86.73+3.08
v v v 95.23+2.25 97.774+1.53 74.65+5.35 76.93+£6.53 83.294+2.38 88.58+1.57
Modality AD vs. CN MCI vs. CN AD vs. MCI
sMRI PET ACC AUC ACC AUC ACC AUC
v 91.574+3.91 95.18+43.75 71.2242.36 72.704+4.41 81.11+2.59 86.42+3.80
v 92.25+2.22 94.8242.53 72.50+2.78 74.51+4.80 81.4243.87 83.154+4.56
v v 95.23+2.25 97.774+1.53 74.65+5.35 76.93+6.53 83.29+2.38 88.584+1.57

3.3 Brain Network Analysis

Brain network analysis: Our graph-based topology analysis reveals significant
rewiring of brain networks during AD progression. Stronger EC-HIP connectivity
in MCI is linked to preserved episodic memory but also predicts faster cognitive
decline, suggesting a trade-off between local compensation and global pathology
spread. Centrality analysis identifies the OLF-EC pathway as a key hub, whose
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disruption sharply reduces network efficiency, marking a critical transition in dis-
ease progression. By integrating sMRI and PET features via our anatomy-guided
GNN , we enhance MCI-to-AD conversion prediction over unimodal models, with
topological metrics explaining a significant portion of clinical decline.

Des.L
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@ :Brain Regions Highly Correlated With Memory

Fig. 3. Brain network analysis showing the top 10 most important regions and their
connections, with a focus on memory-related regions in each task.

Memory Network Reorganization in AD: Our anatomy-guided graph learn-
ing framework identifies memory-critical hubs via multimodal topological analy-
sis. HIP.L shows progressive disconnection in AD [28], strongly linked to episodic
memory decline, with HIP.L-PHG.L connectivity predicting encoding failure
[29]. Early AD sees ANG.R/PHG.R temporarily strengthen connectivity [30],
buffering visual memory loss. However, the OLF.L-HIP.L pathway collapses in
late AD [31], reducing global network efficiency and marking a key transition
for intervention. Capturing these memory-specific network signatures [32], our
model outperforms traditional biomarker-based classifiers

4 Conclusion

AD progression manifests through structural-functional interdependencies that
transcend anatomical boundaries. Our multimodal graph framework overcomes
existing neuroimaging limitations by preserving regional detail while model-
ing dynamic cross-modal interactions. Atlas-guided biomarkers combined with
channel-wise feature refinement enable precise tracking of neurodegeneration in
memory-critical circuits like hippocampal-entorhinal pathways. ADNI validation
demonstrates superior diagnostic accuracy through biologically grounded sMRI-
PET fusion, with graph topology revealing transitions from localized compensa-
tion to global network collapse. This anatomically constrained approach bridges
spatial precision with connectivity dynamics, advancing computational model-
ing of AD progression while providing clinically interpretable biomarkers aligned
with neurodegenerative trajectories.
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