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Abstract. Benefiting from longitudinal pair-wise brain 18F-fluorodeoxyglucose 

(18F-FDG) positron emission tomography (PET) images, disease progression 

characterized by the generative model may assist the baseline visit prediction of 

early Alzheimer’s Disease. However, most existing methods focused on diagnos-

ing disease from single-timepoint scans or a simple stacking of sequential im-

ages, which ignore the importance of disease progression and are not in line with 

actual clinical scenarios. Moreover, decoupling the low-level disease representa-

tions is quite challenging for similar changes between normal aging and neuro-

degenerative changing. In this paper, we propose a classifier induced generative 

model to generate the next-timepoint brain images. Then, we design a statistical 

prior knowledge vision transformer to extract features from the generated next-

timepoint images for disease diagnosis. The main contribution is to build a dis-

ease progression model that can effectively improve diagnosis performance from 

single-timepoint images. Meanwhile, we provide pixel-level disease representa-

tions for explanation. Experiments on ADNI datasets demonstrate that our 

method outperforms other state-of-the-art techniques. 
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1 Introduction 

Alzheimer’s Disease (AD) is a progressive and irreversible neurodegenerative brain 

disorder, which is mainly characterized by memory impairment and cognitive decline 

[1]. With the increase of global aging population, the number of individuals affected by 

dementia is projected to 100 million by 2050 [2]. AD as the most common form of 

dementia, accounts for approximately 60-70% of all cases. Thus, accurate diagnosis of 

early AD is critical and pressing. Positron emission tomography (PET) images can cap-

ture functional changes caused by neurodegenerative disorder before structures atro-

phy, which is widely used in clinical diagnosis.  In recent years, there are many deep 

learning methods that concentrate on AD diagnosis with PET scans [3-6].  

Constructing a diagnostic model on single-timepoint cross-sectional images is the 

most straightforward and widely applicable approach. Ding et al. [4] took an Inception 

V3 on ADNI dataset for distinguishing AD versus all other cases and achieved the AUC 

mailto:zhezhao@dhu.edu.cn


2  X Gao et al. 

of 92%, which demonstrates that the deep learning method can perform accurate and 

robust diagnosis of AD from FDG-PET images. Tau-PET images can reflect tau accu-

mulation and pathological changes of AD, a convolutional neural network (CNN) inte-

grating tau-PET scans and demographic information is proposed, offering an effective 

approach to enhance the classification between mild cognitive impairment (MCI) and 

cognitive normal (CN) [5]. Taking advantage of the transfer learning technique [6], a 

2D slice-level CNN is pre-trained on the ImageNet dataset and fine-tuned with the 

ADNI dataset. This model struggles to fast converge with 50% dropout, achieving a 

remarkable testing accuracy of 91.43% for the classification of healthy versus AD pa-

tients. The methods mentioned above are prone to exploit shortcut patterns on medical 

images. Although they have shown promising performance, it is still challenging to 

meet actual clinical requirements for the lack of expert prior knowledge and explicit 

explanations. 

Embedding expert knowledge into image-wise classification models requires exten-

sive medical descriptions or handcrafted annotations, which comes at a substantial cost. 

Finding biomarkers and leveraging statistical information are both helpful and explain-

able for disease prediction [7-9]. Jiang et al. [7] proposed an anatomy-aware gating 

network for Alzheimer’s disease prediction, which explicitly extracts features from an-

atomical regions using an anatomy-aware squeeze-and-excite operation. It highlights 

the brain regions of importance, improving transparency and assisting clinicians in 

identifying areas for further examination. In terms of statistical analysis, t-test, z-score, 

Wilcoxon rank sum test, Chi-square test and binomial test are used to assess the effect 

of individual PET biomarkers. Then, a univariate logistic regression model is adopted 

to accurately predict the presence of cognitive decline and neuropathological outcome 

[8]. To detect the individualized pathological changes, a brain status transferring gen-

erative adversarial network is proposed [9]. This network generates corresponding 

healthy brain images from patient data. Then, by computing residuals between the real 

and generated images, the severity of the disease can be effectively quantified. These 

methods leverage biomarkers and statistical prior knowledge to enhance the perfor-

mance and interpretability of classification models, thereby advancing the development 

of assisted diagnosis. 

Compared with cross-sectional scans, longitudinal medical sequences can character-

ize the disease progression. However, most methods focus on statistical analysis alone, 

that are not integrated with diagnostic models [10,11]. Recently, many deep learning-

based methods have been proposed to learn the disease representations from temporal 

images [12,13]. These methods stack temporal images together for disease prediction, 

which does not align with real-world clinical scenarios. In practice, temporal medical 

data is very limited because patients fail to follow up or seek treatment at different 

medical centers. Making good use of existing temporal data to assist single-timepoint 

diagnoses may achieve promising performance. 

In this study, we propose a classifier-induced generative model to generate the next-

timepoint brain images from baseline visit scans. Then, the disease progression patterns 

from temporal images are used to enhance the predictive performance on baseline visit 

scans. Besides, we design a prior knowledge vision transformer to extract features from 

the generated next-timepoint images for disease diagnosis. There are two reasons for 
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using PET scans as study data instead of magnetic resonance imaging (MRI). First, PET 

imaging with amyloid-specific tracers is the gold standard for assessing AD, and many 

studies have demonstrated that diagnostic performance is superior when using PET im-

ages [14,15]. Second, PET images exhibit better data consistency compared with MRI 

data. Therefore, no additional image preprocessing operations are needed for paired 

temporal PET images. 

In summary, our main contributions are as follows: 

⚫ We construct a classifier-induced generative model from limited temporal 

brain images to generate the disease progression for the baseline visit single-

timepoint images. 

⚫ We design a prior-knowledge vision transformer to extract features from the 

generated next-timepoint images for disease diagnosis. Pixel-level disease rep-

resentations is performed for explanation. 

 

 

Fig. 1. Overview of our proposed method. Longitudinal progression learning module learns the 

normal or disease progression from paired FDG-PET. Single-timepoint testing extracts the rep-

resentation from the generated next-timepoint images.  

2 Methodology 

2.1 Overview  

Developing diagnostic models for cross-sectional images have reached a performance 

plateau due to the inherent properties of source data. To enhance the diagnostic perfor-

mance on baseline visit images, we aim to introduce additional progression information 

from longitudinal images. Specifically, the baseline visit group include cognitive nor-

mals (CN) and progressive mild cognitive impairments (pMCI). At the next timepoint, 

CN subjects maintain their CN status, while pMCI patients progress to Alzheimer’s 

disease (AD). It is obvious that the classification accuracy for AD vs. CN is higher than 

that for pMCI vs. CN when using the same method. Inspired by this, we propose a 

classifier-induced generative model and a prior knowledge-based vision transformer 
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network. An overview of our proposed method is shown in Fig.1. Detailed description 

of each module is provided in the following subsections. 

2.2 Classifier-induced generative model for progression learning 

Generative models excel in image-to-image translation especially in generating the di-

versity of natural scenes. Generating brain images of individuals with neurodegenera-

tive diseases or cognitive normals presents a significant challenge due to the similar 

changes. For the task of cross-timepoint generation, we construct a classifier-induced 

generative model which consists of two modules: 1) generative adversarial network 

(GAN) and 2) disease classification network. To demonstrate the effectiveness of our 

thinking, we utilize a basic GAN with a U-Net generator and a lightweight 3D CNN 

discriminator.  

 Let 𝑋𝐵𝐿and  𝑋𝑁𝑇 be the baseline visit and the next-timepoint image, respectively. 

The loss function of the generator and discriminator are formulated as: 

 ( )( )( )1G BLL E log D G X= −     (1) 

 ( )( )  ( )( )( )1  D NT BLL E log D X E log D G X= − +      (2) 

where G denotes the generator and D denotes the discriminator. This adversarial train-

ing process ensures that the generated images adhere to the PET modality.  

To improve the ability of the generative model, we introduce pixel-level supervision 

between the generated 𝑋̂𝑁𝑇 and the real 𝑋𝑁𝑇 such as the index of L1 and structural sim-

ilarity index matrix (SSIM) which can be defined as: 
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where M,  ,   are the number of local windows, mean value and the standard devia-

tion of the image. C1 and C2 are constants which are introduced to prevent the zero 

denominator. 

 Above basic GAN can generate a global description of the target image but not the 

disease progression for individuals. An expert model (i.e. DenseNet-18 [16]) learned 

knowledge from target images can effectively assist the generative model. In our study, 

we train a 3D CNN from target images as the expert model. The loss function of expert 

model is computed as: 

 ( )( )( ) ( )( )( )y  (1 y) 1
BLC c BL cL E log D G log D G XX= − − − −     (6) 

where Dc denotes the classifier. And the performance of this module will show in the 

section of experiments and results. 
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2.3 Prior knowledge-based vision transformer for disease prediction 

Using the generated next-timepoint images, we propose a prior-knowledge vision trans-

former network as shown in Fig. 2. First, we compute the residuals between the real 

baseline visit image and next-timepoint image cross all subjects. Then, a pixel-level 

merging operation, followed by a normalization, is performed. As a result, we obtain a 

brain atlas that is highly correlated with the disease. The brain atlas is used as prior 

knowledge for our classification network. For image representation, we leverage 

DenseNet-18 [16] as the backbone due to its acknowledged capability of feature ex-

traction. In terms of the high-level image representation, we introduce the transformer 

to facilitate information interaction. Finally, a fully connected layer with Softmax acti-

vation function is used to predict the subject label. 

 

Fig. 2. The architecture of our prior-knowledge vision transformer network (Prior ViT). 

Mathematically, let the generated next-timepoint image as 𝑋̂𝑁𝑇, the matrix of brain 

atlas is denoted as B. Thus, the high-level image representation R can be formulated as 

𝑅 = 𝑓(𝑋̂𝑁𝑇 , 𝑋̂𝑁𝑇 ∗ 𝐵), where 𝑓 is the feature mapping function. Then, the transformer 

is used to model the interactions of high-level features. Then, a convolution operation 

is applied to R, projecting it to Q , K , and V , respectively. Through the transformer, 

the output can be computed as:  

 ( )Softmax
T

QK VJ / d=   (7) 

where d  is the dimension of the Q , K , V . After the fully connected layer and Soft-

max activation, we get the predicted label ŷ . Finally, the loss function is denoted as: 

 ( ) ( ) ( )
1

[ 1 1 ]+
N

i

clsL y log y logy y
=

= −  −  −   (8) 
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3 Materials 

In this work, the longitudinal PET images are from ADNI dataset. Timepoints contain 

baseline visit and follow up after 36 months. 5-fold cross-validation are used to test the 

performance of our method. In the dataset, there are total 280 subjects (including 88 

CN subjects and 192 patients with pMCI who converted to Alzheimer's disease within 

36 months). To maintain a balanced distribution across classes in the test set, we ran-

domly select an equal number of samples from the pMCI group and CN group. The 

image pre-processing procedures include skull-stripping and linear registration using 

the FSL software. Then, the post-process images are normalized to values between 0 

and 1. Finally, the images are downsampled to 76 × 94 × 76 as the inputs for efficiency.  

4 Experiments and Results 

4.1 Implementation 

Our proposed methods were developed on Pytorch framework within Ubuntu 24.04 

LTS. The generative model was trained with batch size = 2, learning rate = 1e-4, and 

epoch = 300. Adam optimizer was used to update the learning rate. To mitigate the 

overfitting risk, L2 weight decay was set to 1e-4. At the first training stage (i.e., itera-

tions < 100), the loss function = LG + L1 + LSSIM. And then the loss function was set to 

LG + L1 + LSSIM + LD when iterations greater than 100 and less than 200. In the last 100 

epochs, the loss function = LG + L1 + LSSIM + LD + LC. For the predictive model, the 

batch size, learning rate, and epoch were set to 6, 1e-3, and 60, respectively. The opti-

mizer settings were the same as the generative model. Above two models were accel-

erated by 1 Nvidia GeForce RTX 4090 D. 

4.2 Results of Image Generation 

To evaluate the effectiveness of our classifier-induced generative model, we show 4 

typical results on the test set in Fig. 3. First, we calculate the residual between the real 

36-month (M36) image and the baseline visit (BL) image to characterize disease pro-

gression. Then, we compute the residual between the generated 36-month (M36_Gen) 

image and the baseline visit (BL) image. From the first two results (i.e., 128_S_0227 

and 072_S_1211), we can see that the residual images from each patient are similar, 

which indicates that our classifier-induced generative model can map the disease pro-

gression. From the last two results (i.e., 037_S_0327 and 035_S_0048), there are sev-

eral highlight regions on the residual images, that are normal changes caused by aging. 

Moreover, the positions of the highlighted regions differ among test samples, proving 

that our generative model can achieve an individualized diagnosis.  

Second, we use the expert model (i.e., the classification model mentioned in section 

2.2) to quantify the quality of the generated PET images. For comparative analysis, we 

train the expert model on cross-section data of BL, real M36, and generated M36, re-

spectively. The training and testing sets include the same subjects. Table 1 shows the 

classification results.  
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Fig. 3. Illustration of real 36-month (M36) PET images, their corresponding generated results, 

and residuals between baseline visit (BL) image and M36/M36_Gen image.  

Table 1. Performance of expert model [16] on different timepoint data. 

Timepoint Data 
pMCI vs CN (%) 

AUC Accuracy Sensitivity Specificity F1-score 

BL 74.2 73.3 73.3 73.3 73.3 

Real M36 82.7 83.3 80.0 86.7 82.8 

Generated M36 80.3 80.0 80.0 80.0 80.0 
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From Table 1, we make two observations. First, the classification performance on 

M36 timepoint images is better than that on BL images. The above results indicate that 

the disease characteristics will become more distinct over time. Second, the classifica-

tion results on Generated M36 images are greater than that on BL images, which 

demonstrates the effectiveness of our classifier-induced generative model for cross-

timepoint image generation. In this section, we do not introduce architectural innova-

tions to the model, as the primary objective is to validate the effectiveness of the pro-

posed paradigm. 

4.3 Results of Disease Prediction 

In this section, we compare our Prior ViT with other state-of-the-art classification meth-

ods, including (1) a multi-stream convolutional neural network [17]; (2) the expert 

model [16]; and (3) the Prior ViT without disease atlas (denoted as Our prior ViT w/o 

DA). These methods are trained and tested using the baseline visit images. Specifically, 

the first approach is trained and tested on original images, while the last three are 

trained and tested on synthetically generated 36-month images from original images. 

Table 2 compares the classification performance of four different methods.  

Table 2. Classification results achieved by four different methods. 

Method 
pMCI vs CN (%) 

AUC Accuracy Sensitivity Specificity F1-score 

Ashtari-Majla et.al., 2022 72.4 66.7 66.7 66.7 66.7 

Huang et.al., 2017 80.3 80.0 80.0 80.0 80.0 

Our prior ViT (w/o DA) 81.7 80.0 80.0 80.0 80.0 

Our prior ViT 83.5 83.3 80.0 86.6 82.7 

 

From Table 2, we can observe that the methods trained and tested on the generated 

36-month images perform better than those trained and tested on original images. Ad-

ditionally, the performance of our prior ViT without the assistance of disease atlas has 

decreased. Our prior ViT achieves the best performance in classification of pMCI vs 

CN, indicating the effectiveness of our proposed method.  

5 Conclusion 

In this paper, we propose a classifier-induced generative model and a prior-knowledge 

vision transformer model. The classifier-induced generative model learns to map the 

36-month image from the baseline visit image. As a result, the generated 36-month 

images can not only maintain global similarity with the target image but also capture 

the disease progression. Then, disease prediction is performed by the prior-knowledge 

vision transformer model. Experiments on ADNI dataset demonstrate the effectiveness 

of our proposed method. 
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