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Abstract. Cone-Beam Computed Tomography (CBCT) is widely used
for diagnostics and treatment planning in oral and maxillofacial field
due to its low radiation dose and high spatial resolution. Still, its clin-
ical utility is limited by low contrast and incorrect Hounsfield Unit
(HU) values. In contrast, multi-detector CT (CT) provides high con-
trast and reliable HU measurements, with a higher radiation dose. In
this work, we present a novel two-stage framework for unpaired CBCT-
to-CT synthesis that ensures the exact preservation of anatomical struc-
ture, maintains high resolution, and achieves accurate HU value. In the
first stage, we generate pseudo-paired CT images. In the second stage, we
utilize a UNet++ generator enhanced with Interpolation and Convolu-
tion Upsampling (ICUP), Edge-Conditioned Skip Connections (ECSC),
and a dual discriminator strategy for a semi-supervised approach. Conse-
quently, we generate realistic CT images using pseudo-paired CT images.
Extensive quantitative and qualitative evaluations demonstrate that our
method outperforms existing unpaired translation techniques, produc-
ing realistic CT images that closely match CT images in both HU ac-
curacy and exactly preserve anatomical structure of the CBCT. The
code is available at https://github.com/HANJIYONG/Semi-Supervised-
Deformation-Free-I2I.

Keywords: Computed Tomography · Unpaired Image-to-Image Trans-
lation · Semi-supervised Learning

1 Introduction

Cone-Beam Computed Tomography (CBCT) is widely used for diagnostics and
treatment planning in the oral and maxillofacial field [1]. CBCT has the ad-
vantages of lower radiation exposure and higher spatial resolution compared
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Fig. 1. Illustration of shape inconsistency and resolution degradation in unpaired
CBCT-to-CT translation. Our method preserves structural integrity, aligns HU in-
tensities with CT, and maintains fine spatial details. The Fourier-domain magnitude
maps visualize spatial frequency characteristics: CBCT shows a broad, circular energy
distribution indicating high-resolution content, while the target CT and other methods
exhibit more centralized, low-frequency energy patterns. Our method retains a wider
radial frequency distribution, highlighting better preservation of anatomical detail.

with multi-detector CT (CT), and it provides three-dimensional information on
anatomical structures. However, its reduced contrast resulting from lower ra-
diation dose limits use in diagnostics and bone density measurements [2, 3]. In
contrast, CT provides smoother images with enhanced contrast while providing
consistent Hounsfield Unit (HU) measurements [4]. Recent advances in AI-based
solutions have demonstrated that image-to-image translation (I2I) methods can
selectively preserve the benefits of both modalities [5–8]. These approaches en-
hance image quality with high spatial resolution and uniform HU scale. How-
ever, in clinical settings, obtaining paired CBCT and CT data is challenging
due to variations in patient posture, breathing, and motion during image ac-
quisition. Unpaired I2I methods have been explored to address these challenges.
CycleGAN [9] enforces cycle consistency on unpaired datasets to map images
between domains. Similarly, contrastive unpaired translation (CUT) [10] em-
ploys a contrastive learning framework to align corresponding patches between
input and output images without an explicit cycle consistency constraint. UNIT
[11] assumes a shared latent space between the two domains, enabling unsuper-
vised translation via coupled generative adversarial networks. Although these
methods have shown promising performance, they may cause shape distortions,
which are critical in medical imaging. Moreover, since CT typically exhibits
lower spatial resolution than CBCT, the high-resolution advantage of CBCT is
compromised during translation (see Fig. 1). In this paper, we propose a novel
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semi-supervised I2I framework that addresses the above issues. First, we de-
velop an Edge-conditioned unpaired I2I model, inspired by the CUT approach,
to generate pseudo-paired CT images. Second, we perform a paired I2I using
pseudo-paired data to synthesize realistic CT images without shape distortion.
We validate our method against various unpaired I2I methods, demonstrating
improvements in both image quality and fidelity. Our contributions can be sum-
marized as follows:

– We present a novel semi-supervised framework for realistic CT synthesis,
employing a pseudo-paired CT generation strategy followed by a paired CT
generation stage that prevents structural distortion and preserves resolution

– We design an edge-conditioned generator that robustly guides CT synthe-
sis to avoid structural distortion and ensure HU consistency. Moreover, we
propose a multi-task loss that combines several loss functions to preserve
structure, reduce resolution loss, and achieve accurate HU representation.

– We validate our method using structural integrity, resolution, and HU ac-
curacy metrics, with comprehensive qualitative and quantitative analyses
confirming its effectiveness.

2 Method

2.1 Preliminaries: Contrastive Unpaired Translation

Contrastive Unpaired Translation (CUT) [10] is an unpaired I2I method that
maximizes the mutual information between corresponding patches in the source
and generated output. Unlike cycle consistency-based approaches, CUT elimi-
nates the need for reverse mapping by using patch-wise contrastive learning to
preserve local features during translation. In this process, a source image x is
transformed by the generator G into a translated image ŷ = G(x) that aligns
with the target domain. To maintain local feature consistency, CUT maximizes
the mutual information between patches in x and the corresponding patches in
ŷ while distinguishing them from unrelated patches. Patches are embedded as
vectors zk = H(Genc(x)k) and wk = H(Genc(ŷ)k), where H is a multi-layer per-
ceptron (MLP) and k indexes the spatial locations in Genc(x). The patch-wise
contrastive loss is defined as:

LPatchNCE =
∑
k∈ψ

[
− log

exp(z⊤k wk/τ)∑
i ̸=k exp(z

⊤
i wk/τ)

]
(1)

where ψ is a set of spatial indices sampled from {1, 2, ..., S} (with S being the
total number of spatial locations) and τ is the temperature parameter control-
ling the sharpness of the distribution. In this formulation, wk serves as anchor,
(wk, zk) constitutes a positive pair, and (wk, zi) for i ̸= k forms a negative pair.
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Fig. 2. Overview of the proposed two-stage framework. (a) Unpaired image-to-image
translation with edge condition generates pseudo-CT images from CBCT data. (b) A
paired translation stage generates realistic CT images, ensuring consistent HU value
and preserving resolution.

2.2 Unpaired Image Translation to Generate Pseudo-Paired CT

CUT [10] preserves structural consistency by maximizing mutual information
between local patches in the input and generated images, eliminating the cycle
consistency loss required by CycleGAN [9] and reducing computational over-
head. However, unpaired supervision can still lead to content deformation. To
address this, we propose an edge-conditional generator that synthesizes CT
while retaining essential content. Specifically, we extract a gradient edge map
xedge ∈ RH×W×1, to capture structural boundaries, then concatenate it with
the source CBCT image from a two-channel input x ∈ RH×W×2. We also incor-
porate a multi-scale discriminator [12] that evaluates both global structure and
local texture details, enhancing the quality and stability of the translation. This
approach faithfully reconstructs fine textures while maintaining structural coher-
ence, forming a crucial step in creating pseudo-paired datasets for higher-fidelity
synthesis in the subsequent stage.

2.3 Realistic CT Synthesis with Pseudo-Paired CT

Semi-Supervised Framework. With the constructed pseudo-paired CT dataset,
we perform a paired image-to-image translation. Since the pseudo dataset is not
entirely accurate, real CT images are incorporated to better align the HU value
distribution. To prevent structural deformation, we adopt a UNet++ [13] gener-
ator enhanced with Edge-Conditioned Skip Connections (ECSC) and an Interpo-
lation and Convolution Upsampling (ICUP) strategy. ECSC fuses feature maps
with the edge map through a learnable weighted summation, preserving reso-
lution and preventing shape distortion. The ICUP method replaces transposed
convolution-based upsampling, eliminating checkerboard artifacts and yielding
smoother 3D reconstructions. All batch normalization layers are replaced with
instance normalization for improved consistency [14]. While the pseudo-paired
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dataset exhibits structural coherence and approximate HU alignment, it does
not guarantee perfect HU accuracy. To address this, we employ a dual discrimi-
nator framework: DR discriminates between synthetic CT and real unpaired CT,
and DP compares synthetic CT with pseudo-paired CT, thereby enhancing the
reliability of the final translation.

Fig. 3. Qualitative comparison with different methods for unpaired image-to-image
translation. The first and third views represent the coronal and sagittal view, respec-
tively. The second and fourth rows correspond to cropped images of red-boxed regions.

Multi-task Loss. Our overall loss function is a weighted sum of components
that enforce perceptual quality, structural consistency, and HU value alignment.
We include LPIPS loss (LLPIPS) [15], style loss (LStyle) [16] to guide HU val-
ues, patch-wise contrastive loss (LPCL), content loss (LContent) [16] , identity
loss (LIdt) [9], and airway segmentation loss (LAir) for structural consistency.
Additionally, a dual adversarial loss (LDualAdv) is introduced to enforce consis-
tency in pseudo-paired data and to reduce HU differences with CT images. The
LPIPS loss preserves perceptual similarity by comparing deep feature represen-
tations between the generated and pseudo-paired images:

LLPIPS = EX∼P (X)[∥ϕ(G(X))− ϕ(Xp)∥22] (2)

where ϕ(·) denotes feature embeddings extracted from a frozen pre-trained net-
work. We adopt the VGG-16 [17] pretrained on ImageNet [18]. G(X) is generated
image, and Xp is the pseudo-paired reference. The Style loss enforces texture
consistency by aligning the Gram matrices of feature maps:

LStyle =
∑
l

∥Gram(ψl(G(X)))− Gram(ψl(Xp))∥22 (3)
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Table 1. Performance comparison of our method with other unpaired image-to-image
translation networks.“Structure” denotes the structure score, “Luminance” represents
the luminance score, and “Contrast” indicates the contrast score.

Methods Content & Resolution Hounsfield Unit
Structure (↑) GMSD (↓) Luminance (↑) Contrast (↑) NCC (↑)

Cycle GAN 0.940 ± 0.049 0.196 ± 0.028 0.792 ± 0.011 0.919 ± 0.028 0.856 ± 0.051
UNIT 0.944 ± 0.028 0.234 ± 0.028 0.736 ± 0.133 0.919 ± 0.029 0.851 ± 0.069
CUT 0.965 ± 0.021 0.146 ± 0.027 0.761 ± 0.110 0.934 ± 0.016 0.863 ± 0.050
OURS 0.988 ± 0.006 0.139 ± 0.015 0.809 ± 0.091 0.948 ± 0.019 0.888 ± 0.046

where ψl(·) represents the feature maps at layer l of pre-trained network, and
Gram(·) computes the corresponding Gram matrix. The Patch-wise Contrastive
Loss LPCL is applied as defined in Eq. (1) to enhance local feature consistency.
The Content loss ensures structural fidelity by minimizing the difference between
feature embeddings of the generated and pseudo-paired images:

LContent =
∑
l

∥ψl(G(X))− ψl(Xp)∥22 (4)

The Identity loss encourages the generator to maintain the target domain’s struc-
ture:

LIdt = EX∼P (XR)[∥X −G(X)∥22] (5)

where XR represents images from the real CT dataset. To further enforce struc-
tural consistency, particularly in the air regions, we introduce an Air Segmenta-
tion Loss that minimizes the mean squared error (MSE) between the predicted
air regions of the source CBCT and the generated CT:

LAir = EX∼P (X)[∥S(G(X))− S(X)∥22] (6)

with S(·) denoting the air segmentation network. Finally, to align the anatomical
structure similarity of pseudo-paired CT images and the HU value with real CT
images, we employ a dual adversarial loss using two discriminators, DP , and
DR. The dual adversarial loss is defined as:

LDualAdv =Ey∼Preal(Y )[logDR(y)] + Ex∼P (X)[log(1−DR(G(x)))]+

Ey∼Ppseudo(Y )[logDP (y)] + Ex∼P (X)[log(1−DP (G(x)))]
(7)

The total multi-task loss is the weighted sum of these terms:

LTotal =λDualAdvLDualAdv + λLPIPSLLPIPS + λStyleLStyle+

λContentLContent + λPCLLPCL + λIdtLIdt + λAirLAir
(8)

where λDualAdv = 2, λLPIPS = 1, λstyle = 2, λcontent = 1, λPCL = 1, λidt = 1,
and λAir = 1 are weights determined empirically.
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Table 2. Performance comparison of HU values and mean absolute error (MAE) across
hard tissue regions (enamel, dentin, cortical bone, and trabecular bone). The proposed
method achieves HU values closest to CT and exhibits lower MAE compared to CBCT,
CycleGAN, UNIT, and CUT in all regions except trabecular bone.

Enamel Dentin Cortical Bone Trabecular Bone
Methods HU MAE HU MAE HU MAE HU MAE
CT 2577.67 – 1560.56 – 1355.32 – 557.84 –
CBCT 3453.14 875.46 1956.90 396.34 1953.16 597.83 1128.78 570.93
CycleGAN 2421.24 156.43 1669.25 108.94 1459.47 104.16 503.08 54.77
UNIT 2700.22 122.55 1973.66 413.52 1485.27 287.98 833.80 275.93
CUT 2758.98 181.25 2045.66 485.10 1732.15 339.86 398.39 163.96
Ours 2614.89 37.21 1620.85 60.29 1497.69 67.35 708.75 150.91

3 Experiment

3.1 Datasets and Implementation details

Dataset. We collected CBCT and corresponding CT images from 40 subjects
(20 males and 20 females; age range 21-80 years), CT scans were acquired using
a Somatom Definition Edge CT scanner (Siemens AG, Erlangen, Germany) at
120 kVp and 120 mA, with voxel sizes of 0.49×0.49×0.5mm3, and dimensions of
512 × 512 pixels. CBCT scans were acquired using a Green X 12 CBCT scanner
(Vatech, Hwaseong-si, South Korea) at 94 kVp and 11.7 mA, with voxel sizes of
0.2 × 0.2 × 0.2mm3, and dimensions of 600 × 600 pixels. For training, 10,625
axial slices from 25 subjects were used, and 6,375 axial slices from 15 subjects
were reserved for evaluation. All images were resized to 576 × 576 pixels, and
data augmentation including horizontal flipping, shifts of 0.1%, rotations of 20,
and scaling variations of 0.1% was applied to enhance generalization.
Training setup. All models were trained by Adam optimizer for 50 epochs with
an initial learning rate of 2× 10−4. A batch size of 1 was used, and training was
performed on an NVIDIA GeForce RTX 4090 GPU (24 GB RAM). All models
were implemented in Python3 using the PyTorch framework and executed in
identical computing environments to ensure a fair comparison.
Evaluation Metrics. To assess the performance of the generated images, we
computed the structure score from the structural similarity index measure (SSIM)
[19] and the gradient magnitude similarity deviation (GMSD) [20] to evaluate
structural and resolution similarity between the generated output and the source
CBCT. Additionally, we used luminance and contrast scores derived from SSIM,
along with normalized cross-correlation (NCC), to evaluate the similarity of the
HU distribution between the generated output and the CT images.

3.2 Experimental Results

Quantitative Comparison with other methods. We evaluated the perfor-
mance of our proposed method against several unpaired image-to-image transla-
tion methods, including CycleGAN [9], UNIT [11], and CUT [10]. Our method
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Fig. 4. Qualitative comparison of the impact of ICUP and ECSC. The red box indi-
cates the region of interest. Without ICUP, checkerboard artifacts cause vertical line
distortions, and without ECSC, resolution is degraded.

achieves the best performance across all evaluation metrics. In particular, our
method outperforms CUT with the second highest performance by obtaining
0.988±0.006, 0.139±0.015, 0.809±0.091, 0.948±0.018, and 0.888±0.046 for Struc-
ture, GMSD, Luminance, Contrast, and NCC, as summarized in Table 1. Table
2 presents the analysis results for hard tissues. Among enamel, dentin, cortical
bone, and trabecular bone, our method demonstrated most similar to CT images
in all regions except trabecular bone by obtaining mean absolute error (MAE)
37.21, 60.29, 67.35, and 150.91.
Qualitative Comparison with other methods. Figure 3 shows that our
method produces images that closely resemble the CT, preserving structural
details without deformation while maintaining a resolution comparable to the
source CBCT. Moreover, as demonstrated in Figure 1, our approach gener-
ates realistic CT images that closely approximate the target CT, outperforming
other methods. In particular, while other models exhibit slice inconsistency, our
method achieves exact slice consistency.
Effectiveness of proposed components. We conducted ablation experiments
to assess the effectiveness of our proposed ICUP and ECSC modules. Table 3
shows the quantitative performance variations with and without these compo-
nents. The results indicate that ICUP effectively suppresses checkerboard arti-
facts, eliminating vertical line artifacts in the reconstructed volumes. Addition-
ally, ECSC robustly prevents shape deformation and reduces resolution loss by
explicitly integrating edge conditions into the skip connections (see Fig. 5).

Table 3. Quantitative performance comparison of the proposed ICUP and ECSC mod-
ules.

Methods Content & Resolution Hounsfield Unit
Structure (↑) GMSD (↓) Luminance (↑) Contrast (↑) NCC (↑)

Baseline 0.968 ± 0.003 0.150 ± 0.020 0.772 ± 0.120 0.945 ± 0.016 0.878 ± 0.046
+ICUP 0.970 ± 0.004 0.143 ± 0.028 0.782 ± 0.112 0.945 ± 0.015 0.877 ± 0.046
+ECSC 0.980 ± 0.003 0.141 ± 0.018 0.788 ± 0.106 0.946 ± 0.016 0.882 ± 0.045
+ICUP, ECSC (Ours) 0.988 ± 0.006 0.139 ± 0.015 0.809 ± 0.091 0.948 ± 0.019 0.888 ± 0.046
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4 Conclusion

In this paper, we proposed a semi-supervised framework for CBCT-to-CT syn-
thesis that ensures the exact preservation of anatomical shape, high resolution,
and accurate HU value. Our two-stage approach employs an edge-conditioned
unpaired translation model to generate pseudo-paired CT images, followed by a
paired translation stage using a UNet++ generator enhanced by ICUP, ECSC,
and dual discriminators. Extensive evaluations demonstrate that our method
outperforms existing techniques, achieving HU values closest to the CT. In future
work, we plan to further explore artifact-free CT synthesis to enhance clinical
applicability.
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