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Abstract. Acquiring high-quality Positron Emission Tomography (PET)
images requires administering high-dose radiotracers, which increases ra-
diation exposure risks. Generating standard-dose PET (SPET) from low-
dose PET (LPET) has become a potential solution. However, previous
studies have primarily focused on single low-dose PET denoising, ne-
glecting two critical factors: discrepancies in dose response caused by
inter-patient variability, and complementary anatomical constraints de-
rived from CT images. In this work, we propose a novel CT-Guided
Multi-dose Adaptive Attention Denoising Diffusion Model (MDA A-Diff)
for multi-dose PET denoising. Our approach integrates anatomical guid-
ance and dose-level adaptation to achieve superior denoising performance
under low-dose conditions. Specifically, this approach incorporates a CT-
Guided High-frequency Wavelet Attention (HWA) module, which uses
wavelet transforms to separate high-frequency anatomical boundary fea-
tures from CT images. These extracted features are then incorporated
into PET imaging through an adaptive weighted fusion mechanism to
enhance edge details. Additionally, we propose the Dose-Adaptive At-
tention (DAA) module, a dose-conditioned enhancement mechanism that
dynamically integrates dose levels into channel-spatial attention weight
calculation. Extensive experiments on *F-FDG and ®®Ga-FAPI datasets
demonstrate that MDA A-Diff outperforms state-of-the-art approaches in
preserving diagnostic quality under reduced-dose conditions. Our code is
publicly available at https://github.com/Long0121/MDA A-Diff.
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1 Introduction

Positron Emission Tomography (PET) is a molecular imaging technique used to
evaluate metabolic activity and functional states of human tissues and organs.
PET facilitates precise functional assessments of tissues and organs through
tracer-based metabolic visualization imaging, demonstrating indispensable clin-
ical significance in tumor diagnosis, neurodegenerative disease research, and car-
diovascular functional analysis[2, 9, 29]. However, PET imaging quality remains
highly dependent on radiotracer dose. While low-dose PET (LPET) imaging mit-
igates the risk of ionizing radiation (particularly for sensitive populations such
as children and pregnant women [3,5,12]), it inevitably increases image noise,
compromising diagnostic accuracy. This inherent trade-off between radiation re-
duction and diagnostic efficacy remains a major challenge in contemporary PET
imaging technology.

Deep learning has emerged as a pivotal approach for radiation dose reduc-
tion in PET imaging, enabling diagnostic-quality standard-dose PET (SPET)
denoising from LPET. Compared with traditional methods, such as local mean
filtering and frequency-domain filtering [1, 4, 24], which often oversmooth critical
details, deep neural networks learn complex nonlinear mappings between LPET
and SPET through end-to-end training [7, 10, 20, 25, 22, 26, 27|, suppressing noise
while preserving lesion metabolic activity features. Generative model-based de-
noising architectures have become a focal point. For instance, Sanaat et al. [17]
utilized CycleGAN to achieve cross-domain mapping from LPET to SPET. Zhou
et al. [28] combined StyleGAN with segmentation network to generate denoised
images with realistic textures. Nevertheless, these deterministic mapping models
struggle to quantify uncertainties inherent in the reconstruction process. Denois-
ing Diffusion Probabilistic Model (DDPM) [11] addresses this limitation by iter-
atively denoising images through a Markov chain, enabling uncertainty modeling
while retaining fine-grained details. However, existing approaches predominantly
assume single LPET denoising, ignoring the variations in dose response caused
by inter-patient variability in clinical practice, such as physiology, metabolism,
and tracer uptake patterns.

Preliminary progress has been achieved in research for multi-dose PET de-
noising. Xie et al. [23] proposed a Unified Noise-aware Network that performs
PET denoising across different dose levels. But its weight allocation mechanism
compromises recovery performance under high-dose conditions. Tang et al. [19]
developed a High-Frequency-Guided Residual Diffusion Model which uses sinu-
soidal positional encoding to encode the dose, and then input it into the denoising
network along with the embedded timesteps. However, the simple concatenation
of dose embedding and time embedding may fail to enable effective interac-
tion between dose information and the diffusion process, potentially limiting
the model’s adaptability to feature variations across different dose levels. More-
over, this method inadequately exploits the advantages of multimodal imaging
in clinical applications. In multimodal PET/CT imaging, the high spatial co-
herence between CT and PET images provides critical anatomical constraints
that enhance denoising performance [8]. Chen et al. [6] concatenate multimodal
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images as input, ignoring varying modalities contribute differently across image
locations. Wang et al. [21] proposed a local adaptive fusion method with position-
specific weights, which operates only at the input level and does not exploit deep
semantic features, potentially limiting the effectiveness of the multimodal fusion.

In this work, we propose a CT-Guided Multi-Dose Adaptive Attention Diffu-
sion Model (MDA A-Diff) for PET denoising. Specifically, we design a CT-Guided
High-frequency Wavelet Attention (HWA) module to extract CT high-frequency
anatomical boundary features using multi-scale wavelet decomposition, which
are then adaptively fused with PET imaging. Moreover, we construct a Dose-
adaptive Attention (DAA) module that utilizes dose factors to guide channel-
wise and spatial feature weighting, enhancing the model’s perception capability
and robustness under different dose conditions.
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Fig.1: Overview of the MDAA-DIff. (a) is the overall network architecture of
the diffusion model; (b) is a CT-guided modal fusion module; (c¢) is designed
to perform channel-wise attention; and (d) is a multi-dose adaptive attention
module.

2 Methodology

2.1 Improved Denoising Diffusion Probabilistic Models

Our model builds upon an Improved Denoising Diffusion Probabilistic Models
(IDDPM) [15], which significantly reduces the sampling timesteps compared to
DDPM. While DDPM models the reverse denoising process as a conditional
probability distribution, defined as:

po(i—1|we) = N(xe-1; pro(2e,t), To(we,1)), (1)
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where pg(x¢,t) represents the learnable value, and the variance Xg(xy, t) is fixed
as 02] and cannot be optimized as a learnable parameter. IDDPM addresses
this limitation by parameterizing Yg(z,t) modeling through the following for-
mulation:

Yoz, t) = exp (v log B: + (1 — v) logﬁt), (2)

where v is a weighting parameter, 3; represents the noise intensity during the
forward diffusion process, and §; denotes the adjusted noise intensity in the re-
verse process. This parameterization enhances both the model’s flexibility and
the quality of the generated samples. Additionally, it optimizes noise schedul-
ing by selecting specific timesteps S = {s1, s2, ..., sk}, which further improves
sampling efficiency.

2.2 MDAA-Diff Model

Our MDA A-Diff model is shown in Fig. 1. First, the noise-perturbed SPET and
LPET images are concatenated along the channel dimension and fed into the
input model. Multi-scale PET/CT features are extracted by a dedicated en-
coder to achieve cross-modal information fusion. The dose factor is dynamically
integrated into PET feature enhancement through the DAA module, enabling
dose-adaptive adjustments.

High-frequency Wavelet Attention Current PET and CT feature fusion
methods often rely on channel concatenation or Cross-Attention (CA) mecha-
nisms [14]. The quadratic-complexity operation of CA imposes prohibitive com-
putational demands for high-resolution medical imaging. To address this issue,
we propose the HWA module, a fusion module based on 3D wavelet transform
(with bior4.4 wavelet) and Squeeze-and-Excitation (SE), to achieve multi-scale
cooperative enhancement of cross-modal features. As shown in Fig. 1b, PET
and CT features are decomposed into low-frequency and high-frequency com-
ponents: PET low-frequency features capture global metabolic patterns, while
high-frequency features encode lesion edges. CT high-frequency components fea-
tures capture fine anatomical details, including bone boundaries and organ mor-
phology, which provide accurate spatial localization and structural constraints
for PET denoising.

On this basis, the SE module (as shown in Fig. 1c) is utilized to perform
dynamic channel weights for both PET and CT high-frequency components,
emphasizing key features and reducing redundancy. The weighted PET and CT
high-frequency features are concatenated along the channel dimension and pro-
cessed through convolutional layers for cross-modal interaction and dimension-
ality reduction. To enable multi-scale information complementarity, HWA mod-
ules are embedded across all encoder levels (from shallow local details to deep
semantic features) to establish a progressive fusion architecture. Finally, the
fused features are reconstructed from the PET low-frequency components and
the convolved high-frequency components through inverse wavelet transform.
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Dose-Adaptive Attention Module The DAA module adaptively enhances
multi-dose features through the synergistic mechanism of the channel enhance-
ment branch and the spatial enhancement branch. The details of the HWA mod-
ule are shown in Fig. 1d. The module dynamically adjusts the weights of the
input features to accommodate different dose-level distributions and improves
the robustness of the model.

The channel feature enhancement branch. The branch primarily focuses on
dynamically adjusting the channel weights of the input features by capturing
global and local information, while integrating the dose factor D to achieve
adaptive optimization. Specifically, D is projected through a multi-layer percep-
tron (MLP) to generate the dose embedding. Global average pooling and max
pooling operations are applied to the input features, and the results are concate-
nated with the dose embedding. The channel weights are then generated through
a convolutional network, defined as:

channel = S1ZMOl 2 - Re 1 - Concat(Poo s Demb
W, i id{ Wy - ReLU(W; - C Pool(X), D 3

where Pool(X) € {AvgPool(X), MaxPool(X)}, W; and W are 1 x 1 convolu-
tional weight matrices. The channel weights are further scaled by the factor «
and shifted by the bias factor 8, which are used to normalize and adjust the
input features, achieving dynamic channel enhancement, defined as:

X' =Norm(X)® (1+a)+ 3 (4)

where Norm(X) represents a normalization operation, and ® denotes element-
wise multiplication.

The spatial feature enhancement branch. The branch aims to extract the
structural detail and local texture information of the input features along the
spatial dimension. Specifically, the input features are pooled along the chan-
nel dimension using global average pooling and max pooling. The results are
concatenated and passed through a convolutional layer to generate the spatial
attention map, defined as:

X' = X ® sigmoid (Conv (Concat(Mean(X), Max(X)))), (5)

where Conv is a convolutional block composed of a 3 x 3 kernel and a dilated
convolution (dilation rate set to 2). Finally, the spatial attention map is multi-
plied element-wise with the input features to achieve context enhancement along
the spatial dimension.

3 Experiments

3.1 Datasets

We evaluated the performance of MDAA-Diff using two independent PET/CT
datasets comprising 51 patients with '®F-FDG tracer and 60 patients with 58Ga-
FAPI tracer. The datasets were provided by the Nanfang PET Center, Nanfang
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Hospital, Southern Medical University. SPET images were reconstructed from
300 seconds (100%) acquisitions obtained 60 minutes post-injection. LPET im-
ages were reconstructed based on time windows resampled during acquisition,
simulating reduced acquisition durations of 6 seconds (2%), 15 seconds (5%), 30
seconds (10%), 60 seconds (20%), and 150 seconds (50%). All PET images were
reconstructed with resolution of 192x192x673. To address PET-CT mismatches,
CT images were resampled and registered to the PET coordinate system using
mutual information optimization.

3.2 Implementation Details

Our MDA A-Diff model was implemented in PyTorch and trained on an NVIDIA
GeForce RTX 4090 GPU with 24GB of memory. A five-fold cross-validation
strategy was employed in the experimental design. The number of diffusion steps
during the training phase was set to 1000, and the number of sampling steps
during the inference phase was set to 50. We used an AdamW optimizer with an
initial learning rate of le-4, utilizing the cosine annealing scheduling strategy.
The generated image quality was evaluated using the Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) metrics. Visual comparisons
were conducted to demonstrate the model’s ability to improve anatomical fidelity
and effectively suppress noise in critical regions.

Table 1: Quantitative comparison of MDA A-Diff with five state-of-the-art meth-
ods. PSNR and SSIM are reported for both tracers at different dose levels.

BRFDG
PSNR1/SSIM?t 6s 15s 30s 60s 150s
CNN [18] 39.858/0.969 40.082/0.972 40.269/0.974 40.459/0.977 40.614/0.978
SwinUnetr [16] 44.408/0.976 44.979/0.979 45.417/0.981 46.059/0.983 47.115/0.986
MambaMIR [13] 44.349/0.978 45.801/0.982 45.830/0.983 46.043/0.985 46.774/0.987
UNN [23] 44.504/0.972 45.185/0.977 45.663/0.980 46.071/0.982 46.646/0.984
HF-ResDiff [19) 44.728/0.979 45.243/0.982 45.677/0.984 46.174/0.986 47.004/0.984
Ours 46.035/0.984  46.523/0.987  46.889/0.988  47.315/0.989  48.042/0.990

58Ga-FAPI
PSNR1/SSIMT 6s 15s 30s 60s 150s
CNN [18] 39.570/0.967 39.832/0.961 40.049/0.963 40.276/0.965 40.680/0.968
SwinUnetr [16] 44.119/0.966 44.560,0.969 44.866/0.971 45.171/0.973 45.783/0.976
MambaMIR [13] 44.028/0.968 44.429/0.970 44.810/0.972 45.207/0.974 45.844/0.977
UNN [23] 44.759/0.969 45.019/0.973 45.432/0.975 45.765/0.977 46.496/0.980
HF-ResDiff [19] 44.219/0.964 44.632/0.968 45.081/0.971 45.493/0.974 46.287/0.977
Ours 46.689/0.980  47.009/0.981  47.160/0.981  47.362/0.982  47.921/0.983

3.3 Comparison with State-of-the-Art Methods

We compared MDAA-Diff with five state-of-the-art methods, including single-
dose approaches (CNN [18], SwinUnetr [16], MambaMIR [13]) and multi-dose
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Fig. 2: The comparison results of MDA A-Diff with several state-of-the-art meth-
ods at different dose levels. (a): SPET; (b): LPET; (c): CNN; (d): UNN; (e):
SwinUnetr; (f): MambaMIR; (g): HF-ResDiff; (h): Ours.

approaches (HF-ResDiff [19], UNN [23]). All comparison methods take concate-
nated PET and CT images as input. Quantitative analysis (as shown in Table 1)
demonstrated that MDA A-Diff outperformed all comparison models across both
PSNR and SSIM metrics. Moreover, its performance improved significantly at
lower dose levels (e.g., 2% and 5% doses). For instance, in 2% dose imaging
for the '®F-FDG tracer, MDAA-Diff achieved an SSIM of 98.4%, which is 0.5
percentage points higher than the second-best model (HF-ResDiff: 97.9%). This
finding highlights its robustness to complex noise distributions.

Qualitative analysis further validated the clinical value of the proposed method.
Asillustrated in Fig. 2, MDA A-Diff exhibited significant improvements in bound-
ary sharpness for the spine region. Particularly in the 2% dose experiments, its
structural fidelity was noticeably superior to that of other comparison methods.
For denoising tasks of small lesions, MDA A-Diff effectively suppressed noise arti-
facts (as indicated by the blue arrows in Fig. 3) while preserving the fine texture
details of the lesions.
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Fig. 3: Quantitative comparison with state-of-the-art methods at 2% dose level.

Table 2: Quantitative ablation results on the ¥F-FDG and 3Ga-FAPI tracer
datasets.

BF-FDG
PSNR1/SSIMT 6s 15s 30s 60s 150s
LPET 43.151/0.931 43.997/0.944 44.807/0.954 45.674/0.962 47.096,/0.969
IDDPM 44.944/0.978 45.108/0.981 45.623/0.983 46.232/0.985 47.341/0.987
IDDPM+HWA 45.724/0.981 46.068,/0.983 46.273/0.985 46.739/0.987 47.805/0.988
Ours 46.035/0.984  46.523/0.987  46.889/0.988  47.315/0.989  48.042/0.990
68Ga-FAPI

PSNR1/SSIM? 6s 15s 30s 60s 150s
LPET 40.443/0.873 41.382/0.892 42.302/0.908 43.224/0.922 44.689/0.935
IDDPM 44.790/0.973 45.363/0.974 45.825/0.976 46.154/0.977 46.796/0.979
IDDPM+HWA 45.992/0.976 46.187/0.978 46.369/0.980 46.648,/0.980 47.287/0.982
Ours 46.689/0.980  47.009/0.981  47.160/0.981  47.362/0.982  47.921/0.983

3.4 Ablation Study

To validate the effectiveness of each proposed module, we conducted ablation
studies with three sub-models: (1) IDDPM: the standard diffusion model; (2)
IDDPM-HWA: IDDPM integrated with the CT-guided HWA; (3) MDAA-Diff
(Ours): IDDPM incorporating both HWA and DA A module. All approaches were
kept consistent in the experimental setup, ensuring a fair comparison (as shown
in Table 2). The comparison results showed that IDDPM-HWA significantly
improved denoising performance over IDDPM by leveraging CT fusion. MDAA-
Diff further enhanced denoising capability through multi-dose adaptation and
CT guidance, achieving clearer spinal and pulmonary boundaries with enhanced
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structural fidelity. These findings confirmed that the HWA and DAA module
effectively improve PET denoising performance, validating their critical role in
modeling multi-dose characteristics and anatomical constraints.

4 Conclusion

In this study, we propose a CT-Guided Multi-Dose Adaptive Attention Diffu-
sion Model (MDAA-Diff) for LPET denoising. It utilizes high-frequency wavelet
transforms from CT images to integrate multimodal information. This approach
address detail blurring limitations in traditional single-modal denoising models.
Additionally, MDAA-Diff incorporates DAA module to explicitly model dose-
dependent relationships, providing a robust and reliable solution for LPET imag-
ing in clinical applications.

Acknowledgments. This research was funded by the National Natural Science Foun-
dation of China (62371221, 12326616 and 62201245), National High end Foreign Ex-
perts Recruitment Plan (G2023030025L), the Science and Technology Program of
Guangdong Province 2022A0505050039.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Arabi, H., Zaidi, H.: Improvement of image quality in pet using post-reconstruction
hybrid spatial-frequency domain filtering. Physics in Medicine & Biology 63(21),
215010 (2018)

2. Boellaard, R.: Standards for pet image acquisition and quantitative data analysis.
Journal of nuclear medicine 50(Suppl 1), 11S-20S (2009)

3. Catana, C.: The dawn of a new era in low-dose pet imaging (2019)

4. Chan, C., Fulton, R., Barnett, R., Feng, D.D., Meikle, S.: Postreconstruction nonlo-
cal means filtering of whole-body pet with an anatomical prior. IEEE Transactions
on medical imaging 33(3), 636-650 (2013)

5. Chawla, S.C., Federman, N., Zhang, D., Nagata, K., Nuthakki, S., McNitt-Gray,
M., Boechat, M.I.: Estimated cumulative radiation dose from pet/ct in children
with malignancies: a 5-year retrospective review. Pediatric radiology 40, 681-686
(2010)

6. Chen, K.T., Gong, E., de Carvalho Macruz, F.B., Xu, J., Boumis, A., Khalighi,
M., Poston, K.L., Sha, S.J., Greicius, M.D., Mormino, E., et al.: Ultra—low-dose
18f-florbetaben amyloid pet imaging using deep learning with multi-contrast mri
inputs. Radiology 290(3), 649-656 (2019)

7. Cui, J., Wang, Y., Zhou, L., Fei, Y., Zhou, J., Shen, D.: 3d point-based multi-
modal context clusters gan for low-dose pet image denoising. IEEE Transactions
on Circuits and Systems for Video Technology (2024)

8. Fallahpoor, M., Chakraborty, S., Pradhan, B., Faust, O., Barua, P.D., Chegeni, H.,
Acharya, R.: Deep learning techniques in pet/ct imaging: A comprehensive review
from sinogram to image space. Computer methods and programs in biomedicine
243, 107880 (2024)



10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

X. Niu et al.

Fletcher, J.W., Djulbegovic, B., Soares, H.P., Siegel, B.A., Lowe, V.J., Lyman,
G.H., Coleman, R.E., Wahl, R., Paschold, J.C., Avril, N., et al.: Recommendations
on the use of 18f-fdg pet in oncology. Journal of Nuclear Medicine 49(3), 480-508
2008

%u, Y),7 Dong, S., Huang, Y., Niu, M., Ni, C., Yu, L., Shi, K., Yao, Z., Zhuo, C.:
Mpgan: multi pareto generative adversarial network for the denoising and quan-
titative analysis of low-dose pet images of human brain. Medical Image Analysis
98, 103306 (2024)

Fu, Y., Dong, S., Huang, Y., Niu, M., Ni, C., Yu, L., Shi, K., Yao, Z., Zhuo, C.:
Mpgan: multi pareto generative adversarial network for the denoising and quan-
titative analysis of low-dose pet images of human brain. Medical Image Analysis
98, 103306 (2024)

Huang, B., Law, M.W.M., Khong, P.L.: Whole-body pet/ct scanning: estimation
of radiation dose and cancer risk. Radiology 251(1), 166-174 (2009)

Huang, J., Yang, L., Wang, F., Nan, Y., Aviles-Rivero, A.I., Schénlieb, C.B., Zhang,
D., Yang, G.: Mambamir: An arbitrary-masked mamba for joint medical image
reconstruction and uncertainty estimation. arXiv preprint arXiv:2402.18451 (2024)
Jiang, C., Pan, Y., Liu, M., Ma, L., Zhang, X., Liu, J., Xiong, X., Shen, D.: Pet-
diffusion: Unsupervised pet enhancement based on the latent diffusion model. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 3-12. Springer (2023)

Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In:
International conference on machine learning. pp. 8162-8171. PMLR (2021)
Sanaat, A., Boccalini, C., Mathoux, G., Perani, D., Frisoni, G.B., Haller, S., Mon-
tandon, M.L., Rodriguez, C., Giannakopoulos, P., Garibotto, V., et al.: A deep
learning model for generating [18f] fdg pet images from early-phase [18f] florbe-
tapir and [18f] flutemetamol pet images. European Journal of Nuclear Medicine
and Molecular Imaging 51(12), 3518-3531 (2024)

Sanaat, A., Shiri, I., Arabi, H., Mainta, I., Nkoulou, R., Zaidi, H.: Deep learning-
assisted ultra-fast/low-dose whole-body pet/ct imaging. European journal of nu-
clear medicine and molecular imaging 48, 2405-2415 (2021)

Schaefferkoetter, J., Yan, J., Ortega, C., Sertic, A., Lechtman, E., Eshet, Y.,
Metser, U., Veit-Haibach, P.: Convolutional neural networks for improving image
quality with noisy pet data. EJNMMI research 10, 1-11 (2020)

Tang, Z., Jiang, C., Cui, Z., Shen, D.: Hf-resdiff: High-frequency-guided residual
diffusion for multi-dose pet reconstruction. In: International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention. pp. 372-381. Springer
2024

%Vang), Y., Yu, B., Wang, L., Zu, C., Lalush, D.S., Lin, W., Wu, X., Zhou, J., Shen,
D., Zhou, L.: 3d conditional generative adversarial networks for high-quality pet
image estimation at low dose. Neuroimage 174, 550-562 (2018)

Wang, Y., Zhou, L., Yu, B., Wang, L., Zu, C., Lalush, D.S., Lin, W., Wu, X., Zhou,
J., Shen, D.: 3d auto-context-based locality adaptive multi-modality gans for pet
synthesis. IEEE transactions on medical imaging 38(6), 1328-1339 (2018)

Xiang, L., Qiao, Y., Nie, D., An, L., Lin, W., Wang, Q., Shen, D.: Deep auto-
context convolutional neural networks for standard-dose pet image estimation from
low-dose pet/mri. Neurocomputing 267, 406-416 (2017)

Xie, H., Liu, Q., Zhou, B., Chen, X., Guo, X., Wang, H., Li, B., Rominger, A., Shi,
K., Liu, C.: Unified noise-aware network for low-count pet denoising with varying
count levels. IEEE Transactions on Radiation and Plasma Medical Sciences 8(4),
366-378 (2023)



24.

25.

26.

27.

28.

29.

CT-Guided Diffusion Model for Multi-Dose PET Denoising 11

Xu, J., Gong, E., Pauly, J., Zaharchuk, G.: 200x low-dose pet reconstruction using
deep learning. arXiv preprint arXiv:1712.04119 (2017)

Xue, S., Guo, R., Bohn, K.P., Matzke, J., Viscione, M., Alberts, 1., Meng, H.,
Sun, C., Zhang, M., Zhang, M., et al.: A cross-scanner and cross-tracer deep learn-
ing method for the recovery of standard-dose imaging quality from low-dose pet.
European journal of nuclear medicine and molecular imaging pp. 1-14 (2022)
Zhou, B., Tsai, Y.J., Chen, X., Duncan, J.S., Liu, C.: Mdpet: a unified motion
correction and denoising adversarial network for low-dose gated pet. IEEE trans-
actions on medical imaging 40(11), 3154-3164 (2021)

Zhou, L., Schaefferkoetter, J.D., Tham, . W., Huang, G., Yan, J.: Supervised learn-
ing with cyclegan for low-dose fdg pet image denoising. Medical image analysis 65,
101770 (2020)

Zhou, Y., Yang, Z., Zhang, H., Chang, E.I.C., Fan, Y., Xu, Y.: 3d segmentation
guided style-based generative adversarial networks for pet synthesis. IEEE Trans-
actions on Medical Imaging 41(8), 2092-2104 (2022)

Zhuang, H., Codreanu, I.: Growing applications of fdg pet-ct imaging in non-
oncologic conditions. Journal of biomedical research 29(3), 189 (2015)



