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Abstract. Medical Vision-Language Models (Med-VLMs) have demon-
strated strong capabilities in clinical tasks. However, they often struggle
to understand anatomical structures and spatial positioning, which are
crucial for medical reasoning. To address this, we propose a localization-
aware enhancement to the Med-VLM pipeline, introducing improve-
ments at three levels: data, architecture, and alignment. First, we intro-
duce localization lens, a set of expert-validated representations that
provide richer anatomical and positional context. However, as these rep-
resentations increase input complexity, we integrate pixel shuffle within
the model architecture to filter and refine representations, enhancing
spatial information processing while preserving anatomical continuity.
Lastly, to effectively align the localization lens representations with tex-
tual features, we incorporate decoupled contrastive loss (DCL) alongside
the standard loss function. This ensures better feature discrimination
and robustness, particularly in data-limited medical settings. Through
extensive evaluations on medical visual question answering (Med-VQA)
datasets, we show that our methodology improves localization-driven
performance across different Med-VLM architectures. Our analysis of
localization-based questions further reveals that improvements in anatomy
and spatial reasoning directly enhance the overall accuracy of Med-
VQA upto 6.2%. The proposed approach is model-agnostic and can
be seamlessly integrated into existing Med-VLM pipelines. The dataset,
code, and trained models will be made publicly available at https:
//github.com/CVLABLUMS/localizationlens!
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1 Introduction

Medical Vision-Language Models (Med-VLMs) have improved medical image
interpretation by integrating vision and text understanding into a unified frame-
work [5L/12]. These models support various clinical applications, including au-
tomated report generation, medical visual question answering (Med-VQA), and
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clinical decision support [5,/12]. Many approaches adopt contrastive learning
frameworks, such as CLIP, where image and text encoders are trained jointly
on large-scale datasets [4,21}[29]. More recently, large language models (LLMs)
have been integrated into Med-VLMs to enable broader multimodal reason-
ing [6L[21]. LLaVA-Med [11] fine-tunes a general-domain vision-language model
on a figure-caption dataset with GPT-4-generated instruction data, while Med-
Flamingo [18] is pre-trained on interleaved medical image-text pairs to improve
few-shot generative VQA.

These contrastive and LLM-driven approaches demonstrate an increasing
role of Med-VLMs in clinical reasoning and decision-making [26]. While these
advancements have led to improvements in medical AI, Med-VLMs often rely
on large architectures, requiring extensive computation and large datasets, thus
limiting their accessibility [21]. An alternative involves developing smaller Med-
VLMs that retain key functionalities while reducing training and inference costs
|141)23]. However, since anatomical structures and spatial relationships are essen-
tial for accurate clinical reasoning |2}/8|16], smaller models often have difficulty
encoding fine-grained localization cues, which are necessary for tasks such as
disease detection, lesion identification, and reporting [8}(14}22L27].

Several strategies have been explored to address these limitations, including
data-centric methods, parameter-efficient scaling, advanced tokenization, region-
based interpretations, and mixture-of-experts (MoE) approaches [8,|14,22}27].
For example, small language models (SLMs) have been proposed to improve
reliability and accessibility in chronic disease management [23|, while Med-MoE
|8] uses multiple small Med-VLMs as part of an MoE framework to improve Med-
VQA performance. In the region-based interpretations, methodologies have been
proposed to improve the localization capability of existing models by integrating
bounding boxes within VLMs [19}[25].

In this work, we explore the localization aspect in Med-VLMs by introducing
a localization-aware enhancement that improves anatomical and spatial reason-
ing. Our approach consists of clinically meaningful representations, architectural
modifications, and alignment refinements, making it model-agnostic and easily
integrable into existing Med-VLMs. Our contributions are as follows:

(a) We propose clinically meaningful representations, validated by experts at
a Hospital & Research Center, which act as localization lens to enhance
anatomical and positional understanding in medical images.

(b) We integrate a pixel-shuffle mechanism within the model architecture to
effectively handle the increased input complexity from the localization lens,
improving the capture and refinement of spatial and anatomical details.

(¢c) We propose a vision-language alignment pipeline that first aligns the lo-
calization lens representations using decoupled contrastive learning, followed
by their integration into Med-VQA tasks.

(d) We conduct a localization analysis to evaluate how the proposed localization-
aware enhancements impact Med-VQA performance, demonstrating signifi-
cant improvements in spatial reasoning and anatomical understanding across
different Med-VLM architectures.
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2 Methodology

Standard VLM Training Training with Localization Lens
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Fig. 1. Comparison of the existing standard Med-VLM training with the proposed
training utilizing localization lens.

2.1 Preparation of Localization Lens

The standard medical visual question answering (Med-VQA) datasets (such as
VQA-RAD and SLAKE [13]) come with a medical image, questions related
to the image, answers to the questions, and metadata. In this work, on top of the
public datasets, we constructed a clinically meaningful dataset by augmenting
each clinical image with several complementary representations. These represen-
tations include (a) original image, (b) single-color segmented representation of
original image, (c) multi-color coded segmented representation of original im-
age, and (d) masked representation of the original image. We refer to these as
localization lens as they enhance the localization context.

The quality and clinical relevance of these representations have been validated
by experts at a Hospital and Research Center. The complete dataset will be made
publicly available at https://github.com/CVLABLUMS/localizationlens.
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Uni and Multi-color Segmented Representations The segmented repre-
sentations are obtained from the Segment Anything Model (SAM) [9] and Med-
SAM |15]. The representations from SAM produce coarser segmentation maps
that may not be medically accurate and precise [15}24]. However, these repre-
sentations help in the generalization of the model as observed in our ablation
studies (see Tab. ??). The representations from Med-SAM produce precise seg-
mentation maps that capture anatomical structures and help the model learn
the granular details of the medical image |15]. Let I be the original image, f(-)
be the segmentation function, and M; be a segmentation mask where 1 < i < n.

{M17M23"'3Mn}:f<1)' (1)
Union of all segmentation masks results in full map:
M= {MUMU...UM,}. (2)

After obtaining these segmentation masks, we blend these with the original image
using single or multi color-coding. The blending is formulated as:

n
c Zi:1 M; (unicolor)

" (3)
Zi:l Mic; (multicolor),

Iiena = ol + (1 — a)C, where C= {

where « samples values from a normal distribution 0.50 + 0.10 for balanced
blending and c; € R3 represents color for i‘h mask M;.

Masked Representations Each segment in the map represents an instance in
the medical image. For example, in a chest X-Ray image, the question-answer
pairs can be related to lungs. Masking the background regions assists the model
to focus on learning the relevant features. We obtain these masked representa-
tions from segmentation maps with the help of experts. However, these masks
can also be automatically obtained from medical segmentation models or medi-
cal vision language models. As a proof-of-concept, in our code, we share a VLM
based promptable pipeline for automatically extracting these masks on other
datasets (see Fig. [1]).

2.2 Architectural Changes

As shown in Fig.[T] the standard VLM training is optimized by aligning the image
and text tokens. However, as we introduce context complexity by incorporating
multiple representations, we optimize the architecture in two ways: (a) input
representation and (b) filtering representations.

Instead of relying solely on an original image-text pair, our approach con-
structs an input that aggregates multiple visual representations along with the
text. For each original image-text pair, we randomly select two representations
from (a) single-color segmentation maps, (b) multi-color segmentation maps, and
(c) masked representations. These modalities are independently encoded by the
vision encoder, and their embeddings are fused to form a unified representation.
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Efused = U(Eoriga Ereph ErepQ) (4)

where Eqig is the embedding of the original image, and Frepi, Erep2 are the em-
beddings of the selected representations. The function v represents the attention-
based vision encoder mechanism.

Once the input is fused and partitioned into patches for processing, a pixel
shuffle mechanism [7] is applied to refine the visual tokens. Unlike stan-
dard patch partitioning, which divides an image into fixed-size non-overlapping
patches, pixel shuffle takes an alternative approach by restructuring the spatial
information into a more compact form. Given an input of shape (H, W, D x r?),
pixel shuffle rearranges it into:

h/ /
Tow (b, w',d) =T <, E,d x 2+ (k' mod r) x r+ (w’ mod 7’)) (5)
r’or

which effectively reduces the number of patches while preserving local dependen-
cies. This method provides two key advantages over conventional partitioning:

— Instead of treating adjacent pixels independently, pixel shuffle redistributes
sub-pixel information, reducing redundant tokenization. This helps the model
filter relevant tokens for attention.

— Unlike uniform patch extraction, which can break meaningful structures,
pixel shuffle retains continuity by preserving fine-grained details within each
patch. This helps the training as the model focuses on patches from different
representations.

By filtering representations more effectively, pixel shuffle enables the model
to focus on semantically rich tokens, improving both computational efficiency
and vision-text alignment.

2.3 Training Detalils

Since we introduce complexity by adding localization lens, our training is
divided into two sequential phases designed to improve the vision-text alignment.
Alignment of Visual Representations The first phase serves as pre-
training where we train the model for visual representations only. The organ
represented in the image is used as text prompt, ensuring the encoder adapts
to organ-specific features without interference from additional modalities. We
employ decoupled contrastive loss (DCL) [28], which differs from standard
InfoNCE by eliminating explicit negative repulsion. The InfoNCE loss is:

exp(sim(z;, 2;)/7) (6)

L nfo = — 1 3
InfoNCE 0g > exp(sim(z;, z)/7)

where z;,z; are a positive pair, and negatives z; force repulsion. In medical
imaging, this can suppress meaningful variations, specifically when the data is
scarce. DCL removes this constraint:
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exp((z”, 2" /1)
exp((z.”,2{7) /7) + 3 exp((2l”, z1.) /7)
(1)

where z;”’ and zl(.z) are two augmented views of the same sample <.

The model aims to maximize their similarity while handling negatives sepa-
rately, avoiding repulsion. This improves: (i) representation alignment, as similar
medical transformations remain close; (ii) gradient stability, avoiding conflicting
updates; and (iii) low-batch efficiency, making it suitable for small datasets.
This pre-training step enhances domain adaptation and prepares the encoder
for multimodal fusion.

Alignment of Question-Answer Pairs In the second phase, we train the
model for Med-VQA alignment. We use the actual question-answer pairs as text
prompt along with the localization lens. Since, we are training on the question-
answer pairs, the standard InfoNCE contrastive loss (equation 6) is used for
vision-text alignment. This penalizes the negative text tokens as well and ensures
the alignment of visual representations with the question-answer (QA) pairs.

(7)

Lpc = —log

2.4 Inference

The localization lens are medically sound representations that enhance the anatom-
ical and positional details whereas the proposed architectural design and align-
ment help the model extract patterns from the localization lens. After the model
has been trained with the localization lens, we can perform vision-language tasks
on the original image only.

3 Experiments

3.1 Medical VLMs

We select 4 existing SOTA medical VLMs (RaDialog [20], Med-Flamingo [18§],
LLaVA-Med |11], and Med-MoE (Phi) [8]) and 2 non-medical VLMs (Phi [30]
and SmolVLM [1] |) for our experiments. We follow the training pipeline in
Sec. and use the VQA-RAD [10] and SLAKE [13]| datasets for Med-VQA.
To ensure a fair comparison, we follow a 70:30 train-test split.

In our experiments, we use 16-bit precision, learning rate of 0.001, weight
decay of 0.01, and optimize using AdamW. For pixel-shuffle, we use an upscaling
factor of 4. We report accuracy for closed-category questions and recall for open-
category questions. Our results show that the performance of the Med-VLMs
improves significantly with the proposed methodology (see Table .

From our results, we infer that the proposed methodology improves the per-
formance of both the medical and non-medical VLMs. Interestingly, training
models from scratch (i.e. non-medical models) shows more improvement. The
possible explanation for this is the pre-training of VLMs that align the localiza-
tion lens with organ labels more effectively |3]. Moreover, the results show that
the small VLMs are capable of performance improvement with effective training
pipelines and architectural design.
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Table 1. Comparison of different Med-VQA models on the VQA-RAD and SLAKE.

Model VQA-RAD [10] SLAKE [13] Model Size
Open Closed Open Closed ‘
Medical Vision Language Models

RaDialog [20] 54.6 57.9 51.4 56.3 B
RaDialog (with Lens) 55.310.7 60.012.1 53.412.0 61.114.8 7B
Med-Flamingo 18] 64.1 70.7 61.2 68.2 B
Med-Flamingo (with Lens) 65.811.7 72.111.4 65.013.8 71.613.4 7B
LLaVA-Med [11] 612 762 704  75.0 7B

LLaVA-Med (with Lens) 62.411.2 79.813.6 74.013.6 79.214.2 7B
Small Medical Vision Language Models

Phi-MoE [g] 36.7 618 439 570 3.6B
Phi* (with Lens) 48.3 56.7 51.3 58.4 2.7B
SmolVLM 1] 538  57.6 465 559 1.7B
SmolVLM (with Lens) 58.014.2 63.515.9 54.217.7 59.013.1 1.7B
SmolVLM |[1] 48.3 51.4 43.2 49.8 0.5B

SmolVLM (with Lens) 53.615.3 59.217.8 49.316.1 54.714.9 0.5B

* The results could not be reproduced, and we resorted to the base model.

3.2 Localization Analysis

The Med-VQA datasets come with different types of Q/A pairs (i.e. disease iden-
tification, anatomical representation, positioning, modality, severity) [10,[13]. We
conduct an extensive analysis on the Q/A pairs involving localization. We define
localization as questions that (a) focus on presence of an anatomical structure or
(b) focus on the positioning. We filter the questions that focus on the localiza-
tion. Since there are thousands of Q/A pairs, we use the Llama-Vision (11B) [17]
for filtering localization pairs.

Table 2. Localization improvement results on combined dataset.

Model Anatomical Positioning
LLAVA-Med |11] 4.7% 1t 5.6% 1
Med-Flamingo [18] 3.3% 1 5.2% 1
Phi* [81{30] 2.8% 1 3.6% 1
SmolVLM [1] (0.5B) 4.2% 1 5.8% 1
SmolVLM [1] (1.7B) 3.7% 1 6.1% 1

* The results could not be reproduced, and we resorted to the base model.

Table[2]shows the results of our analysis on the combined VQA-RAD [10] and
SLAKE |13] datasets with recall as the evaluation metric. Our results show that
the proposed methodology significantly (upto 8.0%) improves the performance
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Table 3. Ablation study on VQA-RAD [10| with SmolVLM (1.7B).

Lens ‘ Loss ‘ Shuffle ‘ Metrics
SAM Med-SAM Mask ‘ InfoNCE DCL‘ Pixel ‘Overall Localization
X X X v X X 55.4% -
v X X X v v 57.2% 4.9% 1
X v X X v v 56.8% 3.6% 1
v v X X v v 59.4% 7.4% 1
v v v v X X 57.3% 5.2% 1
v v v v X v 58.8% 6.2% 1
v v v X v X 57.7% 5.6% 1
v v v X v v 61.6% 8.0% 1

of Med-VLMs on the localization Q/A pairs. These results suggest that improve-
ments in localization-based Q/A pairs contribute to the overall improvement in
performance across different Med-VLMs.

3.3 Ablation Studies

To determine the contribution of each visual representation, we performed a se-
ries of ablation experiments. We compared the performance of models trained
with only original images, original images with SAM [9] segmentation maps,
original images with Med-SAM |[15] segmentation maps, original images with
both segmentation maps, and original images with both segmentation sources
plus masked images. Our ablation study indicates that while both SAM [9] and
Med-SAM [15] improve results independently, their combined representations
improves results by up to 6.2%. Also, although the (binary) masked represen-
tations alone do not represent meaningful structures, using these masks with
segmentation maps achieves the best results.

4 Conclusion

In this work, we integrate localization context as localization lens, a set of
clinically meaningful representations, on the top of publicly available Med-VQA
datasets. This localization lens adds both useful context and complexity for train-
ing the Med-VLMs. To address this, we propose integrating (a) pixel-shuffle
mechanism within the architecture for filtering relevant context and (b) vision-
text alignment with decoupled contrastive loss. These changes in the archi-
tecture design and vision-text alignment enable the Med-VLMs capture the con-
text using localization lens effectively. Our experiments on Med-VQA datasets
illustrate how the proposed methodology improves the localization context and
subsequently, improves performance across Med-VLMs. The proposed methodol-
ogy is model-agnostic and can be integrated into existing Med-VLM pipelines
to improve their performance.
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