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Abstract. Alzheimer’s disease (AD) progression is characterized by slow,
heterogeneous, and subtle changes that span decades, making transition
points difficult to determine. This challenge is compounded by the com-
plexity of longitudinal clinical data, including irregular follow-up pat-
terns and varying observation durations that traditional survival analy-
sis models cannot handle. We present a novel regression-based survival
framework with three key innovations: (1) Robust longitudinal data han-
dling, (2) Enhanced early-stage prediction, and (3) Flexible integration
with existing models. Using a partial optimization approach for mean
squared error loss, our method achieves state-of-the-art performance in
AD progression prediction, particularly excelling in early-stage scenarios.
Ablation studies identify the regression loss component as the key driver
of improved long-term prediction capability, advancing AD prognosis and
broader applications in longitudinal survival analysis.
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1 Introduction

Alzheimer’s disease (AD), the leading cause of dementia and an irreversible, pro-
gressive neurodegenerative disorder, makes early diagnosis essential for timely
intervention to slow its pathological progression [1]. For early AD diagnosis,
structural neuroimaging has recently been widely employed owing to its non-
invasive nature, its ability to provide high-resolution images of critical brain
structures (such as the medial temporal and hippocampal regions), and its ca-
pacity for quantitative atrophy analysis that yields objective biomarkers [2].
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Moreover, recent progress in deep learning, especially with architectures like
generative models and foundation models, excels at capturing complex relation-
ships and long-range dependencies within image data, and significantly improves
diagnostic accuracy [3, 4]. However, precise diagnosis may fail when dealing with
subtle and heterogeneous AD progression [5].

Survival analysis models have been developed to model pathological progres-
sion. Nevertheless, conventional methods may fail due to incomplete progression
time caused by censoring [6, 7]. Recent advances address this issue by estimating
the survival function S(t), which serves as a probabilistic model to predict the
likelihood that an individual will remain disease-free beyond a specific time point
t [8,9]. More specifically, DeepHit [10], as a representative model, is designed to
divide the timeline into fixed-length intervals, which estimates the probability
mass function for each interval and accumulates these probabilities to construct
the survival function, S(¢) [11]. Another approach extends the Cox proportional
hazards model by parameterizing the hazard function using neural networks as
exemplified by DeepSurv [12]. A third approach directly estimates S(¢) through
a distributional assumption on the progression time parameterized by a deep
learning model as described in Centime [13]. Unlike binary classification, this
approach models the likelihood of remaining disease-free beyond time t, offer-
ing deeper temporal insights and enabling earlier detection of subtle changes in
disease evolution.

In the context of AD, its pathological progression is slow, subtle, and het-
erogeneous, making determining the time-to-progression (TTP) inherently chal-
lenging, even in datasets without censoring. Even worse, real-world data often
feature irregular visit patterns and diverse follow-up spans. On the one hand,
stringent data requirements restrict the amount of training data available to the
models, leading to poorer performance. On the other hand, the complex dis-
tribution of real-world data violates the models’ prior assumptions, introducing
bias during the training process.

In this paper, we address these challenges using data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [14]. Our method directly estimates the
TTP from longitudinal datasets and offers several key advantages over existing
survival models: (1) Enhanced longitudinal data utilization: Unlike conventional
survival models that primarily focus on survival function estimation, our ap-
proach explicitly models intra-subject temporal differences to capture disease
progression patterns; (2) Improved early-stage prediction: By leveraging pairwise
temporal relationships within subjects, our framework can extrapolate disease
trajectories even with sparse initial observations; (3) Flexible model integration:
Our regression-based approach can be seamlessly integrated with established
survival models as a regularization term, enhancing their long-term predictive
accuracy while preserving model-specific characteristics. Our approach leverages
the full richness of longitudinal data and explicitly models disease dynamics,
enabling precise, individualized predictions of AD progression.
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Fig. 1. Illustration of the proposed regression-based survival model framework. (a) Lon-
gitudinal records of a subject with green/red markers indicating pre-/post-AD transi-
tion events (s; = 0/1), (b) Temporal bound transformation mapping each observation
to its transition time region [t~,¢"], where green endpoints represent lower bounds ¢
and red endpoints denote upper bounds t;’, (¢) Neural encoder architecture with MLP
backbone producing time-to-progression predictions y = fo(X), and (d) Regression loss
components Lyeg (pairwise temporal difference matching) and Lpias (censoring-aware
likelihood). Arrows indicate information propagation through the survival prediction
pipeline.

2 Proposed Methods

2.1 Preliminaries

Let Siong denote the set of longitudinal records conmsisting of /N observations
across M subjects, where each record is represented as a tuple (x;,%;,0;,¢€;). In
this context, x; denotes neuroimaging and clinical features observed at time ¢;,
0; € {1,2,..., M} is a unique identifier for the subject, and e; € {0, 1} indicates
the event status (0: no event; 1: event occurred).

Our objective is to develop a parameterized regression model fy(x) for esti-
mating T, where T denotes the time-to-progression from non-AD to AD. For
each record i, we define temporal regions ¢; and t;r, representing the rela-
tive time to the last visit before progression and the first visit after progres-
sion, respectively. For right-censored data (where progression has not occurred),
we set t;" = MaXj.o,—o, t; — t; + C. Similarly for left-censored data (where
progression occurs before the first visit), we set ¢; = t; — minj.o,—o, t; — C.
Here, C' is a sufficiently large constant, effectively treated as infinity. This def-
inition facilitates derivations when both records are from the same subject,
th — t;r =t; —t; =1T; —T}. Each record can be represented as (x;,0;,; , )
since t; and tf encapsulate all necessary survival information.

2.2 Regression Loss for Censored Time-to-Progression Prediction

While minimizing mean-squared error (MSE) is ideal for training a regression
model to predict TTP, censoring precludes direct observation of the target vari-
able T. We tackle this through partial optimization of the MSE loss function.
Let y; = fo(x;) denote the predicted TTP and d; = T; —y; represent the residual
error. The mean residual error is computed as d = + vazl d;. The MSE can be
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decomposed as follows:

1 & 1 &
Lntss = D (d) = 20 (di = d+ )’ 1)

:%Zd(di—d)Jr%Z( —d)’ +—ZJZ (2)

Equation 2 consists of three additive components; we will examine each compo-
nent to eliminate all latent variables T; and d;.

First Term of Equation 2

Second Term of Equation 2

LN , 1 XX , 1L ,
Nz(di_@ SWZZ(di_dj) =G> > (Ti=Ty—(yi—y;)°

i=1 j=1i=1 j=1i=1

Note that T; —1} is available only if both records originate from the same subject,
and T; —T; =t — t;‘ as described in Section 2.1. Furthermore, if neither o; nor

0; is censored, and assuming that t;r and t;r follow unknown distributions with
probability density functions g;(t) and g;(t), respectively, we have:

B - o) = [ = Doty ae def

//t gi(t gj t+ dt+dt+ // t+g1 )g;( t+)dt+dt+

= E(T; - T}).

This demonstrates that substituting T; — T} with t;r — tj does not introduce
additional bias. Therefore, we can define L., as:

Lieg = Z (tj_ - t;_ — (yi — %))2 : (3)

1§z‘§j§N,oi:ojv—c<tj,tj+,t;,t; <C

The design of L., effectively captures intra-subject variations between records,
providing additional temporal information for the model in handling censored
data. Additionally, the differencing mechanism successfully addresses inter-subject
heterogeneity without introducing bias when T is latent.
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Third Term of Equation 2

~ - 2
According to the definition of d, + Zf\;l d?=d* = (% Zi]il(Ti - y,)) . Since
T; remains unknown, we employ likelihood maximization to minimize this ex-

pression. Assuming that 7" follows a distribution with mean 1, Bayesian inference
yields:
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(4)
where P,(t) and p(y) denote the cumulative distribution function (CDF) of
DE and the probability density function (PDF) of DY, respectively. We model
T using a logistic distribution with mean p and scale s, such that P,(t) =
m, and assume a normal prior A'(0,02) for y. The negative log-

likelihood loss Ly, is defined as:

P(p=yi|t].t;7) =

1 1 2/ 2
Lias:_ 1 — 11— —yi/a. 5
b D log ——— ( 1t e—(ti—yn/s) ‘ (5)

The Ly;as loss function is designed to estimate latent TTP across potential re-
gions in the absence of accurate TTP.

Full Regression Loss Combining Equation 5 and Equation 3, we define the re-
gression loss for censored TTP prediction:

LRegression = Lreg + aLbias- (6)

where « is a hyperparameter used to control the strength of the bias loss.

2.3 Model Optimization and Integration with Existing Methods

The proposed differentiable loss function enables seamless integration with most
encoder architectures that yield continuous output and facilitates optimization
via gradient-based methods. Our regression framework directly estimates TTP,
ensuring compatibility with established survival analysis algorithms that infer
expected TTP, denoted as output y in Section 2.2. Integration is achieved by
incorporating the regression loss as regularization within existing survival anal-
ysis algorithms. Given an original objective function Lgriginal, the combined loss
is defined as Lrotal = Loriginal = ALRegression, Where A governs regularization
strength. This integration is theoretically justified because existing survival mod-
els estimate the survival function S(¢), whereas our regression framework directly
predicts TTP. By combining these losses, we align the predicted TTP with the
expectation of the survival distribution, ensuring consistency between the two
objectives while leveraging the complementary strengths of both approaches.
This minimally invasive integration preserves the characteristics of baseline mod-
els while enhancing performance, as demonstrated experimentally.



6 L. Dai et al.

Table 1. Performance comparison of AD progression prediction models using C-index
and mean AUC (with 95% confidence intervals). * denotes our proposed model (Re-
gression) or existing models enhanced by our framework (Regression+[Base Model]),

with Regression+DeepHit achieving the best results (bold).

Model C-index (95% CI) |Mean AUC (95% CI)
Centime [13] 0.714 (0.660-0.746) | 0.700 (0.654-0.746)
DeepHit [10] 0.743 (0.715-0.770) | 0.775 (0.742-0.814)
DeepSurv [12] 0.676 (0.639-0.703) | 0.684 (0.631-0.713)
*Regression 0.765 (0.727-0.797) 0.794 (0.761-0.821)
*Regression+Centime | 0.734 (0.701-0.767) 0.753 (0.720-0.782)
*Regression+DeepHit [0.782 (0.749-0.811)| 0.804 (0.772-0.830)
*Regression+DeepSurv| 0.747 (0.719-0.776) 0.772 (0.738-0.799)

3 Experiments and Results

Dataset Description Our study utilized structural magnetic resonance imag-
ing (sMRI) data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
comprising 1,754 subjects (50.22% male, mean age 73.5 £ 7.14 years) with 6,400
longitudinal records. The cohort was followed for 2.66 4+ 2.95 years (maximum
14.07 years), during which 252 subjects progressed to AD. The large standard de-
viation in follow-up duration reflects the long-tailed distribution characteristics
of the dataset, where a few subjects had very long tracking periods (10-14 years),
while most subjects had shorter follow-up periods. All sMRI data underwent
standardized preprocessing (N4 bias field correction [15], skull-stripping, ACPC
alignment [16]), followed by ROI extraction using the MUSE framework [17]
and ComBat harmonization [18| to minimize acquisition variations. The volu-
metric measurements of 144 anatomically defined brain regions were extracted,
which, combined with demographic features (age and gender), yielded a 146-
dimensional feature vector for AD progression prediction. To prevent data leak-
age, the dataset was split at the subject level in a 6:4 ratio for training and
testing, ensuring that all records from the same subject remained within the
same split. Additionally, 20% of the training data was reserved for parameter
tuning, and all models were evaluated using 5-fold cross-validation.

Model Architecture and Experimental Setting We evaluated our pro-
posed regression-based survival model against three state-of-the-art baseline
methods, including Centime [13], DeepHit [10], and DeepSurv [12]. For fair com-
parison, we used a 4-layer MLP encoder with 146 input dimensions and two
hidden layers (64 and 16 neurons) for all models. The output layer dimension
varies depending on the model requirements: 1 for regression and DeepSurv, 2
for Centime, and 16 for DeepHit. ReLU activation and dropout regularization
were implemented between layers. All hyperparameters, including learning rate,
weight decay rates, loss component weights (particularly the o parameter con-
trolling the strength of Ly;as), and regularization strength A, were optimized
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using Bayesian optimization via the skopt package [19]. Models were trained us-
ing the Adam optimizer with early stopping to prevent overfitting. Final results
were obtained through model ensembling from 5-fold cross-validation to ensure
robust performance evaluation.

Performance Comparison We used the concordance index (C-index) [20] and
averaged time-dependent-AUC [21] as the performance metrics, with results pre-
sented in Table 1. Our standalone regression model demonstrated strong perfor-
mance, achieving a C-index of 0.765 (95% CI: 0.727-0.797) and a mean AUC of
0.794 (95% CI: 0.761-0.821), substantially outperforming traditional approaches.
Integration with existing methods via the Regression+DeepHit framework fur-
ther enhanced performance, yielding a C-index of 0.782 (95% CI: 0.749-0.811)
and a mean AUC of 0.804 (95% CI: 0.772-0.830). This represents a significant im-
provement over the baseline DeepHit model (C-index: 0.743, mean AUC: 0.775),
underscoring the effectiveness of our regression-based enhancement. The superior
performance of Regression+DeepHit compared to integration with Centime or
DeepSurv can be attributed to the compatibility between DeepHit’s ranking loss
and our regression framework. Both approaches model pairwise relationships be-
tween observations, with DeepHit’s ranking loss sharing similarities with our Lcg
component. In contrast, Centime and DeepSurv rely on parametric assumptions
(distributional and proportional hazards, respectively) that may conflict with
our regression-based approach. To stratify patients into high-/low-risk groups,
we use the mean TTP from the training set as a threshold, classifying subjects
with predicted TTP exceeding the threshold as low-risk and others as high-risk.
The Kaplan-Meier curves in Fig. 2(a) illustrate our model’s ability to effectively
differentiate risk groups, as evidenced by distinct trajectories for high-risk and
low-risk groups.

Predictive Power of Regression Model at Early Stages Our regression-
based approach demonstrates superior predictive capability in early disease stages
compared to conventional methods, particularly over longer time intervals post-
enrollment. This enhanced performance is evident from Fig. 2(b), showing con-
sistently higher time-dependent AUC values as the prediction window extends,
offering a valuable clinical window for therapeutic intervention. The improved

Table 2. Ablation study shows the contributions of different loss components: Lp;qs and
Lyey for the Regression model, and additional L,qnkr from DeepHit for the integrated
Regression-+DeepHit model.

Regression Regression+DeepHit
Component|C-Index|Mean AUC|Component|C-Index|Mean AUC
Lyias 0.643 0.660 Lyias 0.724 0.749
Lireg 0.758 0.783 Lrank 0.743 0.775
Full Model 0.765 0.794 Lyeg 0.780 0.799
- - - Full Model 0.782 0.804
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Fig. 2. Performance evaluation of survival prediction models. (a) Kaplan-Meier survival
curves show significant stratification between high-risk and low-risk groups as predicted
by our best-performing model. (b) Time-dependent AUC comparison across different
models demonstrates superior performance of the regression-based approaches over
traditional methods.

early-stage performance stems from our model’s ability to generalize patterns
from limited early observations by modeling pairwise temporal differences across
visits (via Lyeg). This approach enables the framework to extrapolate disease
trajectories even with sparse initial data, leveraging the smoothness assumption
in neurodegenerative progression where subjects with similar early biomarker
profiles and visit patterns are inferred to have comparable time-to-progression.
Ablation studies (Table 2) reveal that L., significantly outperforms Lyias in
predictions, especially in censored test cases. Analysis of DeepHit’s ranking loss
(Lyank) shows similarities to our Licg, with models utilizing only Lyeg or Lyank
demonstrating superior performance compared to those using Ly;,s. This under-
scores the effectiveness of L.c, in enhancing predictive accuracy.

Model Interpretability We use SHAP [22] to interpret the proposed regres-
sion model. Results are shown in Fig. 3. Nine features with contributions greater
than 0.1 are displayed. The top 3 features are from Left Hippocampus Volume,
Right Amygdala Volume, and Left Inf Lat Vent (inferior lateral ventricle), which
are consistent with previously identified biomarkers [23, 24]. The explanation re-
veals how the model predicts the TTP, providing insights into neurodegenerative
disease research.

4 Conclusion

In this paper, we present a novel regression-based survival analysis framework
that addresses critical challenges in longitudinal medical data analysis by effec-
tively handling irregular temporal sampling patterns and censored observations
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Fig. 3. SHAP analysis of the proposed regression model: red values on the positive
axis indicate that higher volumes in specific brain regions are associated with healthier
outcomes, whereas blue values denote the opposite relationship. (Abbreviations: Inf
Lat Vent: inferior lateral ventricle; MTG: middle temporal gyrus; CSF: cerebrospinal
fluid.)

while enhancing early-stage prediction capabilities through innovative loss func-
tion design. Our approach not only achieves state-of-the-art performance but also
provides an extensible framework for integrating with existing survival analysis
methods, thereby improving their long-term predictive accuracy. The experi-
mental results demonstrate significant improvements in both overall accuracy
and the reliability of early-stage predictions, which are crucial for timely clini-
cal interventions. Further interpretation of the model reveals the most important
features captured by the model, providing insights into neurodegenerative disease
research. This advancement has important implications for Alzheimer’s disease
management and broader applications in medical research involving longitudinal
survival analysis.
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