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Abstract. Veriserum is an open-source dataset designed to support the
training of deep learning registration for dual-plane fluoroscopic analysis.
It comprises approximately 110,000 X-ray images of 10 knee implant pair
combinations (2 femur and 5 tibia implants) captured during 1,600 trials,
incorporating poses associated with daily activities such as level gait and
ramp descent. Each image is annotated with an automatically registered
ground-truth pose, while 200 images include manually registered poses
for benchmarking.

Key features of Veriserum include dual-plane images and calibration
tools. The dataset aims to support the development of applications such
as 2D /3D image registration, image segmentation, X-ray distortion cor-
rection, and 3D reconstruction. Freely accessible, Veriserum aims to ad-
vance computer vision and medical imaging research by providing a re-
producible benchmark for algorithm development and evaluation. The
Veriserum dataset used in this study is publicly available via https:
//movement . ethz.ch/data-repository/veriserum.html, with the data
stored at ETH Ziirich Research Collections: https://doi.org/10.3929/
ethz-b-000701146.

Keywords: Dual-plane fluoroscope - Medical imaging - Deep learning -
2D/3D image registration.

1 Introduction

2D/3D image registration based on X-ray imaging is a key requirement for
various biomechanical and medical applications, ranging from joint research to
surgery guidance systems [IJ7/T4]. Traditional registration algorithms typically
rely on digitally reconstructed radiographs (DRRs), or rendering, which matches
a rendered image of the 3D model to the target image by maximizing their sim-
ilarity via optimization or manual vision [3JI2T9JT6]. While this approach has
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been effective, it faces computational complexity and robustness challenges, espe-
cially in clinical settings. Recently, deep learning approaches have achieved con-
siderable success in image registration tasks by leveraging large datasets [9U17].
However, their application in X-ray image registration is constrained by the
scarcity of high-quality medical data and stringent legal restrictions on data
usage.

X-ray imaging presents practical challenges for registration purposes, in-
cluding geometric distortion, limited resolution, and the precise measurement
of source-intensifier distances [I3]. Addressing these factors requires special-
ized calibration and distortion correction techniques, often lacking standardized
datasets for benchmarking their performance. Despite these challenges, combin-
ing the strengths of deep learning and traditional registration methods plausi-
bly holds strong potential to establish a robust, automatic 2D /3D registration
pipeline [4I8J20122]. This pipeline requires large-scale, high-quality datasets that
incorporate realistic poses and provide ground-truth data for model evaluation.

Existing single-plane fluoroscopic datasets provide accurate pose labels for
hip anatomy (DeepFluoro) [6] and for knee implants in total knee arthroplasty
(CAMS-Knee, Stan) [I8/2] where precise kinematics are available. However, dual-
plane fluoroscopy has gained increasing attention over single-plane imaging due
to its superior out-of-plane accuracy [7]. Despite its advantages, an open-source
dual-plane fluoroscopic dataset for knee joint image registration that not only
provides accurate kinematics but also addresses data privacy issues remains an
unmet need. While many studies evaluate their algorithms on existing datasets,
most research pipelines still rely on proprietary, unpublished code and resources,
limiting reproducibility and comparability in the field.

In this work, we introduce Veriserum, a unique dataset of 110,990 dual-plane
X-ray images of tibial and femoral knee implants in various poses associated with
activities of daily living. Using a precision robot, we simulated realistic move-
ment patterns by positioning modified implants to predefined positions based on
motion data from patients with knee implants. Alongside the X-ray images, the
dataset includes raw calibration phantom measurements and calibration func-
tions to enable distortion correction and the calculation of source-to-intensifier
distances.

By including dual-plane fluoroscopic images with tools for calibration cor-
rection, our dataset aims to a) provide the biomechanical research community
with a high-quality dataset and ground-truth data to benchmark 2D /3D image
registration techniques, b) support the computer vision community in develop-
ing novel automated methods for 2D /3D registration [21], image segmentation
[20], or 3D reconstruction [II] specific to knee implants, and c) facilitate the
development of clinically relevant applications, such as kinematics assessment
and surgical guidance systems, by enabling a practical and reproducible image
registration pipeline. Through these contributions, Veriserum provides a robust
dataset for advancing research at the intersection of biomechanics, computer
vision, and medical imaging.
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2 Method

The experimental setup consists of a dual-plane fluoroscopic system and a preci-
sion robotic system with an implant model attached to the end-effector (Fig.
This section describes the necessary elements involved in the data acquisition
process.

|

Fig. 1: Schematic of the dual-plane X-ray imaging setup.

2.1 Dual-plane fluoroscope and X-ray system

The imaging system comprised two X-ray tubes, two collimators, and two X-ray
image intensifiers connected to high-speed cameras, all constructed in a bi-planar
configuration. The two X-ray planes were mounted at an angle of 110° £ 0.5°,
with source-intensifier distances of 1850 and 1855 mm, and intensifier sizes of
360 mm. Image acquisition was performed at a tube voltage of 40 kV and a tube
current of 25 mA on a large focus. Each fluoroscopic image had a resolution of
1664 x 1600 pixels.
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(a) Bead grid calibration pattern. (b) Tube calibration object.

Fig. 2: Calibration objects used in the dual-plane X-ray setup.

2.2 Data acquisition and implant design

The study included two femoral and five tibial radiopaque implant designs man-
ufactured from aluminium to mimic widely used geometries (Fig. [3). The im-
plant geometries were adapted from CAD models provided by Zimmer Biomet
(Winterthur, Switzerland) by smoothing all intricate geometries and adjusting
non-load support wings while retaining the overall topology. A total of ten femur-
tibia implant combinations were tested, with each combination following kine-
matic trajectories derived from the CAMS-Knee datasets [I8J2]. The implant
poses for each time instant replicated the complete trials of various activities.

Each component was securely mounted to the end-effector of an industrial-
grade six-axis precision robot (HORST600, Fruitcore Robotics GmbH, Konstanz,
Germany), operating with a reported precision of £0.05 mm. An adapter ensured
proper positioning and prevented interference between the implant and the X-ray
intensifier. The robotic system sequentially moved the implant to the predefined
poses, holding each position for 500 ms before acquiring an X-ray image. This
delay ensured that the end-effector remained stationary during imaging.

Data acquisition spanned ten measurement days, with one implant combi-
nation measured per day. Femur and tibia components were imaged separately
to enable independent analysis as well as together to simulate complete knee
implant configurations.

2.3 Calibration measurements

Prior to measurements, calibration procedures were performed to correct imaging
distortions and establish accurate geometric relationships between the X-ray
sources and intensifiers. Two key calibration processes were performed: distortion
calibration (DISCAL) and source-intensifier calibration (SICAL).
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Fig. 3: Comparison of different tibial and femoral implant designs: (a) Asymmet-
ric round wings with fixed bearing, (b) Asymmetric straight wings with fixed
bearing, (¢) Symmetric round wings with fixed bearing, (d) Symmetric round
wings with mobile bearing, (e) Femur crossbar design, (f) Femur normal design,
(g) Asymmetric no-wings with fixed bearing.

For distortion correction, a bead grid phantom (45 x 45 beads with 7 mm
spacing) was affixed to the intensifier surface (Fig. . The known geometry of
the bead grid enabled precise distortion correction using a coherent point drift
method to establish correspondences, followed by third-order polynomial fitting
with Powell optimisation to compute the transformation.

For source-intensifier calibration (SICAL), a tube phantom was positioned
500 mm in front of the intensifier. This phantom featured a 200 mm diameter
metal plate, concentrically aligned with the intensifier (Fig, allowing accurate
geometric calibration of the imaging system. The relative position of the X-ray
source was determined by analyzing the projected shadows of the circular metal
plate.

All resulting DISCAL and SICAL values, as well as the raw distortion grid
images (Fig[alt{4b), phantom measurements, and precomputed correction func-
tions, were stored and are available within the Veriserum database. The database
also includes code for computing and applying DISCAL and SICAL functions.
While precomputed calibration values are available in the database for imme-
diate application, users are welcome to reprocess the calibration parameters if
necessary.
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(a) DISCAL grid - Camera A (b) DISCAL grid - Camera B

(c) Default pose - Camera A (d) Default pose - Camera B

Fig. 4: Calibration images used in the experimental setup.

2.4 Poses

A total of 110,990 implant poses were recorded, covering movements from level
walking (28Kk), stair descent (25k), ramp descent (14k), and chair sitting (42k)
activities. Poses were derived from the CAMS-Knee kinematics database. Each
pose corresponded to a predefined end-effector position provided to the robotic
system.

Despite high robotic precision, minor deviations in the accuracy of reproduc-
ing the target pose occurred due to inherent robotic control system limitations.
An automated image registration pipeline (Section 3.2) estimated the true im-
plant pose by finding the rigid transformation between the rendered implant
projection and the acquired fluoroscopic image. Additionally, a subset of 200
images was manually registered using a self-designed image registration soft-
ware, ensuring correct calibrations. These manually registered poses served as a
baseline for evaluating the automated registration performance.



Title Suppressed Due to Excessive Length 7
3 Experiments and Results

The published dataset includes X-ray images with corresponding target robot
poses (110k), corresponding automatically registered poses for all images, and
manually registered poses for a subset of 200 randomly selected images.

3.1 Data Collection and Repeatability

Data was collected over ten days, each day dedicated to a different femur-
tibia implant combination. As part of quality assurance to check precision, the
robotic system repositioned each implant to its default pose between each trial
(Fig. The average 2D correlations between the default pose images were
computed using Normalized Cross Correlation (NCC) to ensure the repeatabil-
ity of the data [5]. Across all measurement days, the correlation scores consis-
tently exceeded 0.985, demonstrating a high inter-day positional repeatability of
the robotic system. However, despite this high precision, discrepancies remained
between the programmed target robot pose and the true implant pose in the
fluoroscopic images due to minor inaccuracies inherent in the robotic control
system (Fig. [5)).

3.2 Automated Pose Registration

We developed a novel differentiable surface renderer using PyTorch3D for auto-
mated implant registration [I0/I5]. This module is compatible with PyTorch,
supports gradient-based optimization, and is designed for future integration
with Al-based networks. The open-source code is publicly available within the
Veriserum dataset to support the research community.

Since the rendered projections of the initial robot pose did not fully align with
the fluoroscopic images, estimation of the true implant pose was necessary for
accurate dataset annotation. Our differentiable renderer was used together with
our automated registration method to refine the initial robot-based positioning
and obtain the matched pose.

Each robot pose was optimised using the ADAM optimiser with NCC as
the similarity metric, over 200 steps and a learning rate of 0.25. To assess reg-
istration accuracy, meticulously manually registered poses served as the gold
standard reference. Translation was evaluated using in-plane L1 loss function,
and rotation via the geodesic angle that measures the shortest path between two
transformations on the rotation manifold.

In approximately 656% of the datasets, the error difference between the tar-
get robot pose and the manually registered ground truth exceeded 2.5 mm in
L1 translational error and 1° in geodesic rotational error (Fig. In contrast,
the automatically registered poses achieved submillimeter accuracy compared to
ground truth, with over 80% images showing errors below 1 mm and 1°. This
result demonstrates that the automated registration pipeline significantly im-
proves pose accuracy (MAE < 0.8 mm, 0.9°), producing results comparable to
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Fig. 5: Error percentile plot of target robot poses and automatically registered
poses (Auto-reg), compared to manual ground truth.

time-intensive manual registration while offering a scalable and reproducible so-
lution. Once this dataset is openly available to the community, both manually
registered poses and automated registered poses can serve as ground truth for
deep learning training.

4 Conclusion and Discussion

This study presents Veriserum, the first open-source, high-quality dual-plane
fluoroscopic dataset for knee implant analysis. It includes fluoroscopic images
of diverse, clinically relevant poses, with both automated and manually reg-
istered pose annotations obtained through systematic calibration, making it a
strong benchmark for evaluating 2D /3D image registration. Its pose diversity
promotes robustness for enhancing data-driven methods [21J9120], and segmen-
tation masks generated via rendering can assist implant segmentation and pose
initialization [§]. Veriserum, therefore, supports downstream tasks such as im-
age registration, implant segmentation, and 3D reconstruction in post-operative
patients [IT].

While Veriserum provides a valuable resource for medical imaging research,
the absence of soft-tissue structures and real patient anatomy may limit the gen-
eralisability of deep learning models trained using these datasets. Additionally,
since Veriserum time-series were reconstructed from datasets originally captured
at only 25 or 30 Hgz, its use in supporting time-series analysis maybe limited in
some cases. Finally, the original fluoroscopic images were captured using ana-
logue source-intensifier technology rather than digital flat panels, and hence
spatial pixel errors were relatively large. Future work could expand the dataset
to include natural bones with soft tissues, upgrade the X-ray system with a flat
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panel technology to avoid DISCAL-related errors, and increase the frequency of
dynamic fluoroscopic sequences.

With its open availability, Veriserum is intended to advance biomechanics and
Al-assisted fluoroscopic image analysis. As a comprehensive and reproducible
benchmark, it enables development of automated 2D /3D registration, segmen-
tation, and 3D reconstruction methods. As deep learning evolves, Veriserum
represents a step towards bridging traditional model-based registration and Al-
driven solutions.
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