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Abstract. Drug-target interaction (DTI) prediction is crucial for drug
discovery, as it accelerates candidate screening and reduces development
costs. However, existing computational methods are often limited to a
single perspective and cannot simultaneously consider the biological in-
formation and complex associations of drugs and targets. Although mul-
timodal data have been introduced, the complementarity and interac-
tion of multi-source information remain underutilized, making efficient
multi-view feature fusion a key challenge. In this paper, we propose a
DTI prediction framework based on multi-view feature fusion and con-
trastive learning, named MFCL-DTI. It integrates sequence feature as
well as structural and semantic information of heterogeneous graph. A
multi-view adaptive fusion module facilitates cross-view feature fusion,
while multi-view contrastive learning enhances feature representation.
Experimental results demonstrate that MFCL-DTI outperforms existing
methods, validating its effectiveness in DTI prediction.
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1 Introduction

Drug-target interaction (DTI) refers to drug molecules binding to biological tar-
gets to modulate biological functions. In drug development, DTI validation is
crucial for confirming drug efficacy. Accurate DTI prediction can narrow candi-
date drug screening scope, reducing experimental costs and development cy-
cles [3, 8]. Traditional experimental methods are time-consuming and labor-
intensive, prompting a shift toward computational approaches [2]. In the big
data era, computational DTI prediction aims to guide in vivo experiments and
wet lab validation, accelerating drug discovery and repositioning [7, 19].
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Recent advancements in deep learning, coupled with the accumulation of
large-scale biomedical data, have significantly improved computational model-
based DTI prediction methods. Current methods are categorized into sequence-
based, network-based, and hybrid approaches [14]. Sequence-based methods pre-
dict DTIs using molecular sequences, such as drug structures or protein se-
quences, with deep learning for feature extraction. DeepConv-DTI [9] employs
CNNs for proteins and ECFP [15] for drugs, while HyperAttentionDTI [20] uses
attention mechanisms for interaction modeling. Transformer-based models like
TransformerCPI [1] and MolTrans [6] also show strong performance. However,
sequence-based methods rely solely on sequence information often fails to fully
reveal the complex biological relationships.

Network-based methods build heterogeneous networks integrating drugs, tar-
gets, and biological entities, using graph techniques for DTI prediction. DTINet [12]
employs inductive matrix completion to learn features from heterogeneous data.
NeoDTI [17] and EEG-DTI [13] use graph convolution network for node repre-
sentation, while IMCHGAN [10] applies graph attention network to relational
networks. SGCL-DTI [11] leverages supervised graph contrastive learning. How-
ever, heterogeneous graphs often miss detailed molecular and sequence features,
limiting interaction capture, and most graph methods focus on single views,
neglecting complex drug-target relationships.

Hybrid methods for DTI prediction integrate multimodal data to address
single-modal limitations, such as sequences and heterogeneous graphs. Multi-
DTI [21] maps heterogeneous and sequence data into a shared space, while
HampDTI [18] extracts features from sequences, integrates them with hetero-
geneous graph learning to capture meta-paths, and combines meta-path graph
embeddings for DTI prediction. MOVE [14] uses sequence and network features
with contrastive learning for enhanced representation. MMA-DPI [4] based on
multimodal attribute learning, fuses micro-level attributes and macro-level at-
tributes for DTI prediction. However, these methods often rely on simplistic
fusion strategies like feature concatenation, lacking deeper exploration of fusion
mechanisms. Additionally, interactions between modalities are frequently over-
looked, underutilizing the full potential of multimodal data.

To address these challenges, we propose a DTI prediction method based on
multiview feature fusion and contrastive learning. Our approach uses multi-scale
convolution to extract features from sequences while incorporating heterogeneous
network to extract structural and semantic features from both neighborhood
and meta-path views. To achieve efficient fusion of features from different views,
we design a Multiview Adaptive Fusion Module (MVAF) to facilitate feature
interaction and integration across views, fully leveraging multi-source informa-
tion. Furthermore, multiview contrastive learning enhances feature representa-
tions by contrasting sequence, neighborhood, and meta-path views. The main
contributions are: (1)We propose an innovative DTI prediction method named
MFCL-DTI, which leverages multiview feature fusion and contrastive learning
to efficiently extract features from multimodal data. (2) We design a multiview
adaptive fusion module to enable cross-view feature interaction and integration,
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Fig. 1. Overview of MFCL-DTI framework, integrating heterogeneous graphs and se-
quence features for DTI prediction.

and introduce multiview contrastive learning to enhance feature representation.
(3) Experiments show that MFCL-DTI outperforms state-of-the-art methods,
validating its effectiveness in DTI prediction.

2 Methodology

2.1 Architecture

The overall workflow of MFCL-DTI is illustrated in Fig. 1, including three key
steps: multiview feature extraction, multiview adaptive fusion, and DTI predic-
tion. First, features of drugs and targets are extracted from the sequence view
using a multi-scale convolution and from the heterogeneous graph view, which
captures structural (neighborhood view) and semantic (meta-path view) infor-
mation. MVAF Module integrates features from different views with contrastive
learning for feature enhancement. Finally, the fused features are concatenated
and processed by a multilayer perceptron to produce DTI prediction.

2.2 Sequence View Feature Extraction

Drug and target sequences, represented by SMILES and FASTA, contain rich
biological information. Traditional single-scale convolution captures local pat-
terns but struggles with global structures and long-range dependencies. There-
fore, we employ multi-scale convolution to extract features at varying receptive
fields, capturing richer multi-scale information. Sequences are encoded into low-
dimensional vectors by embedding layer, yielding Es for drug sequences Ds and
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similarly for target sequences. Multi-scale convolution extracts local features by
convolving Es with varying kernel sizes and finally we obtain drug feature Fcnn:

Fcnn = Concat(Conv1DkEs), k ∈ {4, 8, 16} (1)

where k represents the size of the convolution kernel, and each convolution kernel
extracts features of different scales in the drug sequence.

Subsequently, The feature Fcnn is processed with the ReLU activation func-
tion, followed by a convolution layer to extract high-order features. Mean pooling
is then applied to obtain the drug sequence feature F ds :

F ds = MeanPool(Conv1D(ReLU(Fcnn))) (2)

The same processing procedure is applied to the target sequence Ts, ulti-
mately yielding the feature representation F ts of the target sequence.

2.3 Heterogeneous Graph Feature Extraction

To leverage diverse association information in heterogeneous networks, the neigh-
borhood view captures structural features from direct node relationships, while
the meta-path view extracts semantic features to uncover potential associations.
For feature initialization, we use one-hot encoding to ensure node-type-specific
features reside in independent spaces, then project them into a shared vector
space using type-specific mapping matrix Wt. For node v, its initial feature ov
is mapped as follows to obtain fv:

fv = Elu(ov ·Wt + bo) (3)

where Elu(·) is a nonlinear activation function, and bo is a bias vector.

Neighborhood view feature extraction. For the neighborhood view, node
features are learned by aggregating information from the node and its one-hop
neighbors, capturing structural features in the heterogeneous network. Given a
node type p ∈ P , Nv denote the one-hop neighbors of node v, and Np

v represent
neighbors of type p. During aggregation, node-level attention is used to weight
contributions from different neighbors, as different types and nodes contribute
unevenly to others. For type p, its attention coefficient α̃v is defined as:

αv = LeakyReLU(αT
p · fv + (αT

p · fv′)T) (4)

α̃v =
exp(αv)

Σv′∈Npv exp(αv′)
(5)

where αp denotes the node-level attention vector for node type p, and αv′ rep-
resents the attention value of the neighboring node v′ with respect to node v.
Subsequently, by applying the node-level attention mechanism, the neighbors of
each type are aggregated into a unified representation as follows:

fpv = Elu

 ∑
v′∈Npv

α̃v · fv′

 (6)
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where fv′ represents the projected feature of node v′.
To further integrate features of all types for node v, we introduce a type-

level attention mechanism, which dynamically evaluates the relative importance
of each type’s embedding by assigning weight coefficients. Specifically, the im-
portance of each node type is measured as follows:

βp = softmax

 1∣∣Vψ(v)∣∣
∑

v∈Vψ(v)

αT
n · tanh (fpv ·Wn + bn)

 (7)

where Vψ(v) denotes the set of all nodes of type ψ(v), and αn is the type-level
attention vector. βp represents the importance of neighbors of type p to node v.
Wn and bn are learnable parameter matrices and bias vectors, respectively.

Finally, the feature F vn of node v, incorporating neighbor features, is obtained:

F vn =
∑
p∈P

βp · fpv (8)

Meta-path view feature extraction. To fully leverage the heterogeneous
network information, we also extract implicit high-order semantic relationships
from the meta-path view, enriching feature information for node interactions
and enhancing network representation. Let M denote the set of predefined meta-
paths. For each meta-path m ∈M , given the neighbor set Nm

v (nodes connected
to v via m), we construct a meta-path-specific GCN to aggregate information
from meta-path neighbors as follows:

fmv = fv · [d(v) + 1]−1 + fv′ · [
√
(d(v) + 1)(d(v′) + 1)]−1 (9)

where fv and fv′ represent the projected features of node v and node v′, and
d(·) denotes the degree of the corresponding node.

For node v, the influence weights of different meta-path neighbors on its
embedding vary. Therefore, a semantic-level attention mechanism is introduced
to weight and integrate information from meta-path neighbors. The feature fmv
undergoes an attention processing process similar to formulas (7) and (8), and
finally generates the final meta-path feature F vm for node v.

2.4 Multi-view Adaptive Fusion

To integrate multiview features, we design MVAF module, combining adaptive
weight fusion and cross-modal attention to merge meta-path, neighborhood, and
sequence views. MVAF dynamically adjusts feature weights to capture comple-
mentary information, generating comprehensive representations for multi-source
data utilization. In the heterogeneous network, the meta-path view models se-
mantic associations, while the neighborhood view captures structural interac-
tions. Specifically, we concatenate the two features to obtain Fmn:

F xmn = Concat(F xm, F
x
n ), x ∈ {d, t} (10)

where F dm and F dn represent the features of drug d in the meta-path view and
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neighbor view, respectively. Similarly, F tm and F tn denote the features of target
t in the meta-path view and neighbor view.

Since the contributions of different view features to the overall representation
are interdependent, we design a dynamic weighting mechanism to assign adaptive
fusion weights to the meta-path view F xm and neighborhood view F xn . The weight
ω is learned in a data-driven manner and the fused network features for drugs
F dh and targets F th are computed as:

ω = σ(F xmn ·Wc + bc) (11)
F xh = ω ⊙ F xm + (1− ω)⊙ F xn , x ∈ {d, t} (12)

where Wc and bc are learnable parameters, and ⊙ is element-wise multiplication.
To integrate multimodal feature information, we fuse the network view and

sequence view through cross-modal attention. Learnable attention weights are
assigned to each view, and the features are weighted and fused as follows:

F xsh = σ(wxs ) · F xs + σ(wxh) · F xh , x ∈ {d, t} (13)

where wxs and wxh are learnable parameters, and F dsh and F tsh are the final fused
features for drugs and targets, respectively.

2.5 Multi-view Contrastive Learning

To fully utilize multi-view information, we construct a contrastive learning task
to optimize representations by maximizing mutual information of positive pairs
and distinguishing negative pairs, enhancing prediction performance and cross-
view fusion. Inspired by maximum mutual information [16] and the InfoNCE
model [5], we use the InfoNCE loss to measure similarity between meta-path
and neighbor views. For drugs, the loss between F dm and F dn is calculated as:

Ld = −log
exp (sim(F dm, F

d
n)/τ)

Σd′∈Vψ(d)
exp (sim(F dm, F

d′
n )/τ)

(14)

where sim(·) denotes cosine similarity, and τ is the temperature coefficient. The
loss calculation for targets is analogous, yielding Lt.

For the sequence and heterogeneous network view, contrastive learning is
performed by computing the similarity of their respective node embeddings. The
model is optimized by maximizing the similarity of positive pairs and minimizing
differences between negative pairs. For drugs, the contrastive loss between the
sequence and heterogeneous view is calculated as:

Lsd = −log
exp (sim(F ds , F

d
h )/τ)

Σd′∈Vψ(d)
exp (sim(F ds , F

d′
h )/τ)

(15)

Lhd = −log
exp (sim(F dh , F

d
s )/τ)

Σd′∈Vψ(d)
exp (sim(F dh , F

d′
s )/τ)

(16)

Similarly, the contrastive losses for the sequence and network view of targets
are Lst and Lht . The final cross-modal loss for the sequence and heterogeneous
network view is computed as:

Lcr = 0.25(Lsd + Lhd + Lst + Lht ) (17)
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2.6 DTI Prediction

For DTI prediction, the final fused features F dsh and F tsh are concatenated and
input into multi-layer perceptron (MLP). Finally, the model outputs a score ŷ,
representing the interaction probability:

ŷ = σ(MLP(Concat(F dsh, F
t
sh))) (18)

For DTI prediction task, we use the Binary Cross-Entropy (BCE) loss:

LBCE = − [y · log ŷ + (1− y) · log(1− ŷ)] (19)

where y is the true label.
For model optimization, the loss from the contrastive learning task is com-

bined with the loss of DTI prediction to form the total loss function:

L = LBCE + λ(Lcr + Ld + Lt) (20)

where λ is a hyperparameter that balances the contribution of the contrastive
learning loss and the DTI prediction loss.

3 Experiments and Results

Dataset. The DTI prediction task employs a drug-related heterogeneous net-
work dataset from DTInet [12], integrating multi-source data to establish a drug-
target information network through shared biomedical entities. The network
comprises 708 drugs, 1512 targets, 4192 side effects, and 5603 diseases, with
interactions including 1923 drug-target, 10036 drug-drug, 199214 drug-disease,
80164 drug-side effect, 7363 target-target, and 1596745 target-disease relation-
ships. Drug and target sequences are represented using SMILES sequences and
amino acid sequences, respectively, sourced from DrugBank and UniProt.

Implementation Details and Evaluation Metrics. Due to the variable
lengths of drug SMILES and target sequences, we set maximum lengths of 150
for SMILES and 1500 for target sequences, truncating longer sequences and zero-
padding shorter ones. In experiments, the latent space dimensionality is 1024,
batch size is 16, and the Adam optimizer is used with a learning rate of 1×10−5.
Training runs for a maximum of 40 epochs. Model effectiveness is evaluated using
six metrics: Area Under the ROC Curve (AUC), Area Under the Precision-Recall
Curve (AUPR), Accuracy (ACC), Precision, Recall, and F1 Score (F1).

3.1 Comparative experiments

To evaluate the performance of MFCL-DTI, we conduct comparative experi-
ments with seven mainstream methods, including DTINet [12], NeoDTI [17],
MultiDTI [21], IMCHGAN [10], HampDTI [18], SGCL-DTI [11] and MOVE [14].
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Table 1. Comparative experimental results.

Methods AUC AUPR ACC Precision Recall F1
DTInet 0.8612 0.8861 0.8029 0.8263 0.7853 0.7996
NeoDTI 0.9150 0.9173 0.8550 0.8505 0.8628 0.8562

MultiDTI 0.8948 0.9030 0.8133 0.8230 0.8207 0.8101
IMCHGAN 0.9193 0.9240 0.8398 0.8619 0.8083 0.8342
HampDTI 0.9115 0.9079 0.8542 0.8400 0.8750 0.8571
SGCL-DTI 0.9220 0.9321 0.8362 0.8137 0.8828 0.8425

MOVE 0.9328 0.9280 0.8591 0.8467 0.8794 0.8599
MFCL-DTI 0.9472 0.9512 0.8698 0.8452 0.9095 0.8665

As shown in Table 1, MFCL-DTI outperforms all baseline models across eval-
uation metrics and achieves the best performance in AUC (0.9472) and AUPR
(0.9512), with relative improvements of 1.54% and 2.50% over the second-best
model. The model also demonstrates strong performance in ACC, Recall, and
F1, indicating superior discriminative capability, overall accuracy, and balanced
performance.

3.2 Ablation Study

To assess the contribution of different modules to model performance, we con-
ducted ablation study with six variants: (i) w/o Seq: removing sequence in-
formation; (ii) w/o HN: removing the heterogeneous graph; (iii) w/o MVAF:
replacing the MVAF with simple concatenation; (iv) w/o HN-C: removing con-
trastive learning between the neighbor and meta-path views; (v) w/o SH-C:
removing contrastive learning between the sequence and graph views; and (vi)
w/o Contrast: removing all contrastive learning strategies. As shown in Fig. 2,
the complete MFCL-DTI model outperforms all variants in metrics such as AUC,
AUPR, ACC, and F1 score, validating the effectiveness of multiview feature fu-
sion and contrastive learning in enhancing DTI prediction performance.

Fig. 2. Ablation experiments for verifying the effectiveness of model components.

3.3 Case Study

To validate MFCL-DTI’s effectiveness, we conducted case study, presenting the
top 10 ranked DTI pairs in Table 2 and largely confirmed in DrugBank database.
Detailed analysis revealed strong alignment with known mechanisms, such as
DB01142 inhibiting P23975 for antidepressant effects, DB00363 targeting P08908
for antipsychotic action, and DB0046 inhibiting P35354 for anti-inflammatory
effects. These high-confidence predictions demonstrate MFCL-DTI’s capability
in identifying potential DTIs.
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Table 2. Top 10 DTI predictions ranked by prediction scores.

DrugBank ID Drug Name Uniprot ID Target name Ground truth Predicted label Prediction score Evidence
DB01142 Doxepin P23975 Sodium-dependent norepinephrine transporter 1 1 0.9956 DrugBank
DB00363 Clozapine P08908 5-hydroxytryptamine receptor 1A 1 1 0.9948 DrugBank
DB00465 Ketorolac P35354 Prostaglandin G/H synthase 2 1 1 0.9927 DrugBank,TTD
DB00500 Tolmetin P35354 Prostaglandin G/H synthase 2 1 1 0.9912 DrugBank,TTD
DB00734 Risperidone P35348 Alpha-1A adrenergic receptor 1 1 0.9892 DrugBank
DB00573 Fenoprofen P35354 Prostaglandin G/H synthase 2 1 1 0.9888 DrugBank
DB00193 Tramadol P31645 Sodium-dependent serotonin transporter 1 1 0.9855 DrugBank
DB00248 Cabergoline P28222 5-hydroxytryptamine receptor 1B 1 1 0.9826 DrugBank
DB01076 Atorvastatin Q01959 Sodium-dependent dopamine transporter 0 1 0.9825 N/A
DB01224 Quetiapine P08912 Muscarinic acetylcholine receptor M5 1 1 0.9823 DrugBank

4 Conclusion

In this work, we propose MFCL-DTI, a novel framework for DTI prediction lever-
aging multiview feature fusion and contrastive learning. It employs multi-scale
convolution for sequence feature extraction and captures topological and seman-
tic information through neighbor and meta-path views. A multiview adaptive fu-
sion module dynamically integrates cross-view features, while contrastive learn-
ing enhances representation. Experimental results demonstrate MFCL-DTI’s su-
perior performance, validating its effectiveness in DTI prediction.
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