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Abstract. Thanks to advances in neuroimaging, graph neural networks
(GNNs) have emerged as a powerful tool for learning brain graph rep-
resentations to identify Alzheimer’s Disease (AD). However, existing
methods often overlook the brain’s hemispherical lateralization, enforc-
ing homogeneous information propagation between hemispheres, which
limits their learning capabilities. In this study, we propose a novel dis-
sociative brain graph learning framework (LG-DBGL) guided by brain
lateralization to enhance AD identification. Specifically, the Lateralized
Decoupling (LD) module partitions brain networks into left/right hemi-
spheric and cross-hemispheric sub-networks. The Dissociative Graph En-
coder (DGE) module then independently learns representations for each
sub-network, preserving lateralized functional features and avoiding fea-
ture confusion. Finally, the Multi-Source Fusion Mechanism (MSFM) dy-
namically quantifies the contribution of each sub-network to AD-related
pathological features, enabling lateralization-guided multi-source feature
fusion. Comprehensive experiments conducted on a real-world dataset
demonstrate the effectiveness of our LG-DBGL. Our code is publicly
available at https://github.com/ilove-gh/LG-DBGL.

Keywords: Alzheimer’s disease · Brain graph learning · Brain lateral-
ization, Graph neural network.

1 Introduction

Alzheimer’s Disease (AD) is a complex neurodegenerative disorder characterized
by cognitive decline and language deficits, significantly impairing the quality of
life in elderly populations [9,6]. Recent advances in neuroimaging have enabled
the representation of the brain as a brain graph (or brain network) based on neu-
roimaging data [22,14]. To further our understanding, identification, treatment,
and exploration of AD, graph neural networks (GNNs) [10,3,26] have been devel-
oped to learn representations of these brain networks, capturing structural and
functional connections within the brain [21,30,28]. This approach provides a rich
basis for analyzing AD and has emerged as a promising tool for its identification.
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Fig. 1. Brain lateralization in the brain network. (a) Existing methods treat the
brain as an entire brain network. (b) Hemispheric lateralization of the brain. (c) The
connection strengths of the left intra-hemisphere, right intra-hemisphere, and cross-
hemisphere edges (i.e., LE, RE, and CE) of 120 subjects were generated by DTI on
the ADNI dataset. (d) Our method decouples the brain network into three parts via
lateralization.

From the view of cognitive decline in patients, the key challenge in brain
graph learning for AD identification is to capture the critical pathological fea-
tures related to diseases from brain networks. For instance, some studies analyze
brain networks in specific states to identify AD-related abnormal features [23,28].
In contrast, others track changes across different time points or tasks to uncover
dynamic alterations [15,12]. Moreover, multimodal brain graph learning inte-
grates various imaging modalities (e.g., Diffusion Tensor Imaging (DTI), func-
tional Magnetic Resonance Imaging (fMRI)) to reveal disease-related features
comprehensively [13,27]. However, these methods feed the entire brain network
into the model (Fig. 1(a)), ignoring the issue of hemispherical lateralization.

In clinical settings, hemispherical lateralization is a crucial and significant
characteristic that emerges through developmental processes and manifests as
distinct functional specializations between the left and right hemispheres [25,11],
as shown in Fig. 1(b). For example, the left hemisphere primarily handles lan-
guage processing and logical inference [4,18], while the right hemisphere is more
involved in spatial cognition and emotional processing [19,24]. In patients with
AD, regions associated with language in the left hemisphere often exhibit sig-
nificant changes due to cognitive decline [8,7]. Moreover, this functional differ-
entiation results in intrinsic differences in information transfer patterns between
intra-hemispheric and inter-hemispheric connections [17,20], a phenomenon em-
pirically validated in real biological datasets, detailed in Fig. 1(c). Therefore,
the methods that consider the brain network as a whole but neglect the factor
of hemispherical lateralization will restrict the model’s ability to learn critical
pathological features of AD. Specifically, 1) Loss of Functional Specificity:
Treating both hemispheres with the same information propagation patterns ob-
scures the unique functional roles of the left and right hemispheres. 2) Blurred
Coupling Relationships: Equating intra-hemispheric and inter-hemispheric
connections blurs their distinct roles in AD progression. These issues reduce the
sensitivity of existing models to brain network degradation, thereby limiting
their learning representation capabilities and overall efficacy in identifying AD.

As such, to address these issues, we propose the Lateralization-Guided Dis-
sociative Brain Graph Learning framework (LG-DBGL), whose innovations are
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reflected in three aspects: First, The Lateralized Decoupling (LD) module lever-
ages the characteristic of hemispherical lateralization to partition brain networks
into left/right hemispheric and cross-hemispheric sub-networks, explicitly mod-
elling lateralized functional features. Second, we design a Dissociative Graph
Encoder (DGE) biased towards brain networks that preserve lateralized func-
tional features through independent representation learning for all sub-networks,
avoiding feature confusion. Third, we propose a Multi-Source Fusion Mechanism
(MSFM) that dynamically quantifies the contribution of each sub-network to
AD-related pathological features, enabling multi-source feature fusion. Exten-
sive experiments on the ADNI dataset demonstrate that LG-DBGL significantly
outperforms existing benchmark methods in AD identification tasks.

The main contributions of this study can be summarized as follows:

• We propose the dissociative brain network learning paradigm based on the
theory of hemispherical lateralization, breaking through the biological ratio-
nality limitations of traditional brain graph modelling.

• We develop the DGE and MSFM modules, effectively addressing feature
confusion caused by hemispherical lateralization and achieving dissociative
brain graph learning.

• A series of experiments on the ADNI dataset validate the superiority of
LG-DBGL in AD classification tasks.

2 Methodology

2.1 Problem Formulation

In this study, we construct the brain network using resting-state fMRI and DTI
data as the initial node feature matrix and graph structure. Specifically, each
brain network is represented as G = (A,X), where X = {v1, ...vn} ∈ Rn×d is
the node feature matrix extracted from fMRI, with each node vi characterized
by a d-dimension Blood Oxygen Level Dependent (BOLD) time series, and A ∈
Rn×n is the adjacency matrix. The element Aij ∈ [0, 1] represents the Fractional
Anisotropy (FA) between brain regions i and j, measured by DTI. Here, Aij = 0
indicates unrestricted diffusion of water molecules, while Aij = 1 signifies highly
directional diffusion. Each brain network G is associated with a label y = {0, 1},
where y = 0 denotes a healthy subject and y = 1 denotes a subject with the
disease. The overall goal is to develop a model that accurately classifies brain
networks into their respective groups based on these labels.

2.2 Model Architecture

LG-DBGL overcomes the limitations of existing brain graph learning methods
by explicitly modelling hemispherical lateralization, mainly including: (a) Lat-
eralized Decoupling; (b) Dissociative Graph Encoder; (c) Multi-Source Fusion
Mechanism. The overall architecture of the LG-DBGL model is shown in Fig. 2.
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Fig. 2. Overall architecture of LG-DBGL. (a) Lateralized Decoupling; (b) Dissociative
Graph Encoder; (c) Multi-Source Fusion Mechanism.

2.3 Lateralized Decoupling (LD)

As mentioned in the Introduction Section, the brain exhibits significant hemi-
spherical lateralization, especially in pathological conditions such as AD. To
explicitly model this lateralization and the degraded cross-hemispheric inter-
actions during AD progression, we partition the brain network G into three
sub-networks: the left hemisphere GL, the right hemisphere GR, and the cross-
hemispheric GC . Let V = VL ∪ VR with VL ∩ VR = ∅, where VL and VR denote
the set of left/right hemisphere nodes, respectively. Such as the left hemisphere
GL (Similarly definitions for GR, AR, and XR), we define the sub-network node
feature matrix as XL = {Xi | i ∈ VL} and the adjacency matrix AL as:

(AL)i,j =

{
Ai,j , if i, j ∈ VL,

0, otherwise.
(1)

To obtain cross-hemispheric GC , we extract its adjacency matrix via:

(AC)i,j =

{
Ai,j , if i ∈ VL , j ∈ VR or i ∈ VR , j ∈ VL,

0, otherwise,
(2)

and defined corresponding node feature matrix as XC = {Xk | ∃l : (AC)k,l ̸= 0}
including all nodes participating in cross-hemispheric edges.

This partition decouples lateralized functional specialization of brains (GL, GR)
while isolating degenerative cross-hemispheric interactions (GC) in AD.

2.4 Dissociative Graph Encoder (DGE)

In this section, the DGE preserves lateralized functional features through in-
dependent representation learning for GL, GR, and GC . This approach ensures
hemisphere-specific feature learning while mitigating cross-sub-network interfer-
ence. The DGE mainly utilizes two encoding types–hemispherical and cross-
hemispherical encoders–to achieve this purpose.
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Hemispheric Encoder. Since hemispheric networks in patients with AD may
exhibit local connectivity degradation due to the disease, we use heat diffusion
to enhance critical pathways of these networks. For the GL (Similarly with GR),
we calculate the normalized graph Laplacian ÂL = In − D

−1/2
L ALD

−1/2
L with

the degree matrix (DL)i,i =
∑

j(AL)i,j . Inspired by graph diffusion network[5],
we define the heat kernel as Kheat = e−tÂL (t is the diffusion time, and weak
connections (weight < 0.0001) pruned to reduce noise), to model the diffusion
process on the network. To obtain the hemispheric embedding ZL, we apply a
two-layer convolution to aggregate the results via SUM pooling:

ZL = SUM
(
σ (Kheat · σ (KheatXLW1) ·W2)

)
, (3)

where W1 and W2 are learnable weights, σ is a RELU activation function. The
parameter t balances the trade-off between local and global network structures.
Larger t values promote global diffusion and capture broader network structures,
while smaller t values preserve local connectivity patterns within the network.
Cross-Hemispheric Encoder. The cross-hemispherical networks GC exhibit
a bipartite-like topology with connections primarily between nodes across hemi-
spheres. Accordingly, we employ a Graph Isomorphism Network (GIN) [26] for
its strong capacity in learning discriminative graph representations. At the l-th
layer, the hidden feature vector h(l)

i for each node i is updated using the following
aggregation function to integrate information from neighbouring nodes:

h
(l)
i = MLP

(
1 + ϵ(l)

)
· h(l−1)

i +
∑

j∈N (i)

(
h
(l−1)
j

) , (4)

where ϵ is a trainable parameter, N (i) is the set of neighbouring nodes of i,
and h

(0)
i = (XC)i is the initial feature vector of node i, MLP is a multi-layer

perceptron to iteratively conduct for all nodes at l-th layer, followed by pooling
together to generate a graph-level representation:

ZC =

n∑
i=1

hi. (5)

2.5 Multi-Source Fusion Mechanism (MSFM)

Once we obtain the embeddings for all sub-networks, we use MSFM to dynam-
ically quantify each sub-network’s contribution to AD, enabling lateralization-
guided multi-source feature fusion. Specifically, let P = {ZL, ZR, ZC} be the
set of sub-network embeddings, and for each p ∈ P, the attention coefficient ep
assigned to the sub-network embedding is computed by:

ep = qTp · tanh(Wp · (Zp)
T
+ bp), (6)

where qp is a parameterized vector, Wp is a learnable weight matrix, and bp is
a bias value. These attention coefficients are normalized via softmax to sum to
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one, enabling a probabilistic interpretation of each sub-network’s contribution.

βp =
exp (ep)∑

p′∈P exp (ep′)
. (7)

Finally, we obtain the final brain network embedding ZG by taking the
weighted sum of all the embeddings using the normalized attention weights:

ZG =
∑
p∈P

βp · Zp. (8)

2.6 Objective Loss

Through the modules introduced above, we obtain highly abstracted brain net-
work representations for each subject. After that, the final embedding of ZG into
an MLP to derive the prediction:

ŷ = MLP(ZG). (9)

For each sample t ∈ T , we feed the predicted label ŷ and the true label y
into the cross-entropy function to compute the prediction loss.

Ls = − 1

T
∑
T

(
y · log

(
ŷ
)
+

(
1− y

)
· log

(
1− ŷ

))
. (10)

3 Experiments

3.1 Experimental Setup

Datasets. We evaluated our LG-DBGL using the publicly accessible Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset [16], which includes 120 sub-
jects: 28 healthy controls (NC), 51 with mild cognitive impairment (MCI), and
41 with AD. MCI is widely recognized as a precursor to AD, making it a critical
component in AD-related identification tasks. All subjects received two imaging
scans: DTI for brain structure and fMRI for brain functional activity. Further
details on preprocessing and subject demographics are available in the GitHub
repository referenced in the abstract.
Baselines. We compared our proposed LG-DBGL with several representative
methods, including GNN-based methods such as GCN [10], GCNH [1], CAGNN
[2], as well as brain graph learning methods for AD identification like Cross-GNN
[27], HeBrainGNN [21], BGAN [29], OT-MCSTGCN [30], and MHSA [28]. This
selection provides a comprehensive benchmark for evaluating our method.
Implementation Details. Given the relatively small size of the ADNI dataset,
we employed 5-fold cross-validation for all experiments to ensure fair compar-
isons. All methods’ performance was evaluated using the mean values of classifi-
cation Accuracy (ACC), F1-score (F1), and Area Under the Curve (AUC). For
our proposed LG-DBGL, the hyperparameters were set as follows: 0.5 dropout
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Table 1. The performance of LG-DBGL is compared to competing methods.

Group Model NC vs. MCI NC vs. AD

ACC(%) F1(%) AUC(%) ACC(%) F1(%) AUC(%)

GCN-Based
GCN 70.92± 6.21 67.99± 8.82 68.0± 12.8 66.59± 9.91 62.02± 13.78 63.69± 12.19

CAGNN 77.33± 6.12 74.56± 10.39 73.33± 12.69 75.38± 14.66 69.33± 19.77 69.67± 16.94
GCNH 81.0± 6.86 79.13± 9.78 77.18± 10.84 79.89± 9.33 78.57± 10.27 77.33± 7.74

Brain
Network

HeBrainGNN 74.92± 10.31 83.64± 6.68 65.67± 12.89 81.58± 5.30 87.18± 2.12 73.76± 8.94
OT-MCSTGCN 79.67± 5.06 82.49± 11.38 66.06± 14.01 78.13± 5.8 82.43± 6.06 68.64± 24.01

BGAN 79.58± 9.72 78.0± 10.27 73.82± 7.53 81.10± 3.81 80.89± 3.58 77.43± 6.23
MHSA 82.33± 7.18 80.08± 10.13 77.52± 10.90 80.84± 5.80 79.60± 6.20 75.90± 9.42

Cross-GNN 79.75± 4.64 86.37± 2.89 71.67± 8.94 83.95± 8.56 88.23± 6.26 80.08± 11.13

Ours LG-DBGL 88.5± 7.56 87.16± 8.8 83.0± 11.85 85.49± 4.54 84.52± 5.5 82.08± 7.14

Table 2. Evaluation of the significance of different components of LG-DBGL.

Method NC vs. MCI NC vs. AD

ACC(%) F1(%) AUC(%) ACC(%) F1(%) AUC(%)

w/o MSFM 86.08± 8.27 84.07± 10.25 79.67± 12.93 83.96± 5.72 83.56± 5.90 82.0± 7.01
w/o DGE 83.50± 3.30 81.85± 4.49 77.67± 7.86 76.59± 10.25 74.86± 11.07 73.42± 12.31
w/o LD 75.16± 13.76 69.21± 19.46 69.58± 18.89 70.88± 7.06 64.42± 12.03 64.08± 10.36

LG-DBGL 88.5± 7.56 87.16± 8.8 83.0± 11.85 85.49± 4.54 84.52± 5.5 82.08± 7.14

rate, 0.025 learning rate, weight decay of 1e-4, 500 epochs with patience 30, and
16 hidden units. The diffusion time t was tuned from 1 to 10 in increments of 1.
Baseline models were implemented manually in our experimental environment
according to the authors’ specified parameters. In addition, all experiments were
conducted on servers equipped with NVIDIA GeForce RTX 4090 GPUs.

3.2 Results

Classification Results. We evaluated LG-DBGL on two target domain tasks,
as detailed in Table 1. Across these tasks, LG-DBGL consistently outperformed
competing methods on nearly all metrics. Specifically, for MCI identification,
LG-DBGL achieved accuracy improvements of 6.17% − 17.58%, and for AD
identification, it demonstrated gains of 1.54% − 18.9%. These results highlight
LG-DBGL’s robust recognition capabilities across different cognitive stages. The
enhanced performance is primarily attributed to LG-DBGL’s innovative design,
which effectively integrates brain hemispherical lateralization and detailed mod-
elling of complex brain networks, enhancing its efficacy in identifying AD.
Ablation Study. We conducted ablation studies on LG-DBGL’s three key
components—MSMF, LD, and DGE—to evaluate their contributions to AD-
related brain network modelling, as detailed in Table 2. w/o MSMF will equalize
the contributions of all sub-networks; w/o DGE will share a simple GCN [10]
encoder across sub-networks; and w/o LD will input the entire brain network
into the encoder in Eq. 3 without lateralization-based decoupling. Results indi-
cate significant performance drops when any component is removed, with the
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Fig. 3. Visualization of results based on the ADNI dataset. (a) Distribution of attention
weights captured by the MSFM module for left/right and cross-hemisphere networks
(i.e., LH, RH, and CH). (b) Impact of Ablating left/right and cross-hemisphere net-
works on model performance. (c) Sensitivity analysis of diffusion time t. (d) Impact of
heat diffusion on network connectivity.

most severe declines observed for LD. These findings highlight the importance
of leveraging lateralized brain network characteristics for effective pathological
feature capture and validating lateralisation’s critical role in LG-DBGL’s design.

3.3 Discussion Analysis

Lateralization. To investigate the impact of lateralization in AD and MCI
identification, we visualized average attention weights for left, right, and cross-
hemispheric sub-networks captured by the MSFM module (Fig. 3(a)) and found
the left hemisphere’s dominant role in MCI and AD identification. Additional
ablation studies (Fig. 3(b)) reveal that excluding any sub-network results in a
notable decline in model accuracy, with the left hemisphere exhibiting the most
significant effect. These results underscore the critical role of left-hemisphere
lateralization, consistent with its links to language and cognitive functions.
Heat Diffusion. We analyzed the sensitivity of the heat diffusion time t
as mentioned in Section 2.4. Fig. 3(c) shows that the model achieves optimal
performance when t is set to 3 or 4. Specifically, smaller t values (e.g., t =
1) capture local connectivity but neglect global structure, leading to a slight
drop in classification performance. Conversely, larger t values (e.g., t = 10)
capture global information but may obscure critical local features, negatively
impacting the recognition of MCI and AD. To visualize the impact of diffusion
time on connectivity, we generated heatmaps of the left hemispherical network
(Fig. 3(d)) at t = 4, with weights below 0.01 removed to enhance visual clarity.
The original network appears disordered, whereas the diffused network shows
enhanced local connectivity. This enhancement allows the model to learn richer
feature representations.
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4 Conclusion

In this paper, we introduce LG-DBGL, a novel brain graph learning frame-
work for AD identification, guided by hemispherical decoupling. LG-DBGL par-
titions brain networks into lateralized sub-networks and learns their representa-
tions independently, thereby capturing unique pathological features and elimi-
nating cross-hemispheric interference. Experiments on the ADNI dataset demon-
strate superior performance compared to representative baselines, significantly
improving classification accuracy. By decoupling hemispherical lateralization,
LG-DBGL not only provides a more nuanced understanding of brain network
pathology but also pioneers a new direction in neurodegenerative disease re-
search, opening new avenues for early diagnosis and intervention.
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