
4D CardioSynth: Synthesising Dynamic Virtual
Heart Populations through Spatiotemporal

Disentanglement

Haoran Dou1,2,3, Jinghan Huang1,2,3, Arezoo Zakeri1,2,4, Zherui Zhou1,2,5,
Tingting Mu1,2,3, Jinming Duan1,2,4, and Alejandro F. Frangi1,2,3,4,6,7

1 Centre for Computational Imaging and Modelling in Medicine (CIMIM), University
of Manchester, Manchester, UK

2 Christabel Pankhurst Institute, University of Manchester, Manchester, UK
3 Department of Computer Science, University of Manchester, Manchester, UK
4 Division of Informatics, Imaging & Data Sciences, University of Manchester,

Manchester, UK
5 Department of Electrical & Electronic Engineering, University of Manchester,

Manchester, UK
6 NIHR Manchester Biomedical Research Centre, Manchester Academic Health

Sciences Centre, University of Manchester, Manchester, UK
7 Medical Imaging Research Centre (MIRC), Department of Cardiovascular Sciences

and Department of Electrical Engineering, KU Leuven, Leuven, Belgium
alejandro.frangi@manchester.ac.uk

Abstract. Dynamic virtual populations are critical for realistic in-silico
cardiovascular trials, yet current approaches primarily generate static
anatomies, limiting their clinical and computational value. In this study,
we present 4D CardioSynth, a generative framework for constructing
dynamic 3D virtual populations of cardiovascular structures that change
over time (3D+t). To model the complex interplay between cardiac struc-
ture and motion, we develop a factorised variational approach that dis-
entangles spatial and temporal information in latent space, enabling in-
dependent control over anatomical variations and motion patterns. We
demonstrate 4D CardioSynth’s performance using a diverse dataset of
bi-ventricle shapes acquired from 6,500 patients across complete car-
diac cycles. Our results illustrate the superiority of 4D CardioSynth over
state-of-the-art methods with respect to anatomical specificity, diversity,
and generalisability, as well as motion plausibility. This approach enables
more accurate virtual trials for cardiovascular interventions.
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1 Introduction

In-silico trials have emerged as powerful tools that offer a cost-effective and
ethical alternative to traditional clinical trials. Virtual populations are a funda-
mental component of in-silico trials, aiming to provide a more diverse range of



2 Haoran Dou, et al.

anatomical and physiological variations than the restricted real cohorts in clini-
cal trials. These virtual populations are typically represented parametrically as
a set of anatomical structures sampled from generative models [5]. In the cardio-
vascular domain, the generation of realistic patient-like cardiac anatomies that
capture both spatial and temporal dynamics is crucial for ensuring the validity
and generalisability of in-silico trials. However, creating such virtual populations
of dynamic anatomy remains challenging due to the complex interplay between
cardiac structure and motion, as well as the potential missing time point across
the sequence in the dataset.

Statistical shape models have served as the traditional baseline for generat-
ing virtual populations [6, 8], but they are limited in their capacity to model
complex spatiotemporal variations of cardiac shape. With the advent of deep
learning, generative models have emerged as promising alternatives for captur-
ing anatomical variability more accurately. Recent approaches focused on static
shape modelling, where Beetz et al. proposed a variational autoencoder (VAE)
to learn left ventricular shape variations [1], and Dou et al. enhanced this frame-
work by incorporating normalising flows in the latent space to improve the model
flexibility [4]. Whilst these methods demonstrated improved shape modelling
capabilities, their limitation to fixed time points (end-diastole, end-systole or
both) restricted their utility in motion-related in-silico studies. To address this
limitation, a few studies explored dynamic cardiac anatomy generation. Qiao et
al. introduced a VAE-based framework to model voxel-based cardiac anatomy
sequences, employing recurrent neural networks (RNNs) to capture temporal
dynamics [12], and later advancing to transformer architectures for improved
spatiotemporal modelling [11]. However, the entanglement of spatial and tempo-
ral features in the latent space may constrain the model’s flexibility, potentially
reducing the diversity of virtual populations. On the other hand, they require
the full sequence data to be available for each training iteration so that the latent
RNN can capture the temporal information.

We introduce a novel generative framework, namely 4D CardioSynth, for
synthesising dynamic 3D+t virtual heart populations with disentangled spatial
and temporal representations. Our approach employs a specialised VAE archi-
tecture that explicitly decomposes the latent space into independent spatial and
temporal subspaces, each processed by dedicated decoders for shape and motion
reconstruction. We incorporate a temporal recurrent module to capture complex
temporal dependencies, ensuring physiologically plausible cardiac motion pat-
terns. We evaluate our framework comprehensively, assessing anatomical fidelity,
diversity and generalisability, as well as motion plausibility through established
metrics. Our experimental results demonstrate that the proposed framework gen-
erates more realistic cardiac anatomies with superior motion characteristics over
the current state-of-the-art method, CHeart [12]. The disentangled representa-
tion enables independent control over anatomical variations and motion patterns,
facilitating more flexible virtual population generation for in-silico trials.



Title Suppressed Due to Excessive Length 3

2 Methodology

Our framework aims to generate dynamic 3D cardiac anatomies by explicitly
disentangling spatial and temporal representations through a specialised varia-
tional autoencoder (VAE) architecture. As illustrated in Fig. 1, the framework
consists of four main components: an encoder that extracts latent representations
from input cardiac meshes, a decomposed latent space that separates spatial and
temporal information, a temporal recurrent module (TRM) to capture the mo-
tion features and dual decoders that reconstruct anatomical shapes and motion
patterns, respectively.
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Fig. 1. Schematic illustration of our proposed 4D CardioSynth architecture.

2.1 Dynamic Virtual Heart Populations Synthesis

In our approach, a dynamic virtual heart sequence is represented as a sequence of
triangular surface meshes. These meshes correspond to the cardiac structures of
interest, i.e., Bi-Ventricle used in our study containing Left and Right Ventricles
(BiV, LV and RV). Each mesh is defined by a set of 3D vertex coordinates
along with an adjacency matrix that encodes vertex connectivity (i.e., the edges
forming triangular faces). By performing template-based registration [14], we
ensure that all meshes (regardless of the sample or time point) share a consistent
topology and vertex ordering.

Within this framework, we denote the sequence of meshes as X = {xk}Tk=1,
where xk represents the 3D coordinates of all vertices at time point k. The
proposed framework is designed to estimate the conditional distribution p(xk |
x1) of future heart shape xk given the shape at end-diastole (ED) time point x1.
This is achieved by modeling the following joint distribution:

p(xk, z
t
k, z

t
1, z

s, x1) = pθ(xk | zt
k, z

s, x1)pγ(z
t
k | zt

1)qψ(z
s | x1)qψ(zt

1 | x1), (1)

where the latent temporal and spatial codes, i.e., zt
1 and zs computed from the

static input by an encoder ψ as well as the temporal code zt
k predicted at each

time step by a neural network γ, are explained below.
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Spatiotemporal disentanglement: We assume that a heart shape at a
fixed time point (i.e., ED in this study) can be explicitly decomposed into two
distinct latent components: a spatial code zs and a temporal code zt

1, modelled
by the conditional distribution qψ(zs | xt

1) and qψ(zt
1 | xt

1), respectively, param-
eterised by an encoder ψ. The spatial code zs is intended to capture patient-
specific anatomical features that remain constant throughout the cardiac cycle,
while the temporal code zt

1 encodes the time-dependent motion state for ED.
To enforce the disentanglement, we decode zs to reconstruct the input mesh

at ED (producing x̂1) so that zs retains detailed static shape information. In
contrast, zt

1 is learned indirectly through the TRM rather than via direct decod-
ing, which encourages zt

1 to encode only the dynamic aspects of cardiac motion.

Temporal recurrent module: The temporal code of the heart changes over
time, which is modelled as a first-order Markov process, meaning each latent
state depends only on the previous state. As a result, the k-step transition from
zt
1 to zt

k can be expressed as:

pγ(z
t
k | zt

1) = p(zt
1)

∫ k−1∏
k′=1

pγ(z
t
k′+1 | zt

k′) dz
t
1:k−1. (2)

Starting from zt
1, we iteratively apply the one-step transition pγ(z

t
k′+1 | zt

k′)
(parameterized by a multi-layer perceptron γ) to reach zt

k, instead of directly
predicting zt

k in a single leap. This yields a smoother temporal transition in the
latent space as compared to a direct multi-step prediction.

Vertex-wise motion prediction: We obtain the future mesh at different
time step by deforming the current mesh x1. Applying a deformation field (the
displacement of each vertex) from time 1 to time k, denoted by φk, the predicted
mesh coordinates is given by

xk = x1 ◦ φk. (3)

As a result, instead of directly estimating the distribution of the absolute
coordinates of a heart pθ(xk | zt

k, z
s), we learn the distribution of the deformation

field pθ(φk | zt
k, z

s) conditioned on the latent codes, through learning a decoder
θ. By focusing on vertex-wise deformations, 4D CardioSynth ensures that the
predicted motion remains physiologically coherent, resulting in more realistic
virtual cardiac anatomy sequences.

2.2 Network Architecture

Both the encoder ψ and decoder θ contain five residual graph convolutional
blocks. Each block comprises two Chebyshev graph convolutions [3], each fol-
lowed by instance normalisation and SiLU activation [7]. A residual connection
is added between the input and output of each graph-convolutional block. The
number of feature maps for each block is 16, 32, 32, and 64 in the encoder
and inverted in the decoder. We employ hierarchical mesh down/up-sampling
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operations as proposed in CoMA [13]. The MLP γ for learning temporal repre-
sentations contains two fully connected layers with hidden dimensions of 64 and
SiLU activation.

2.3 Loss Functions

The encoder ψ for computing static latent codes, the multi-layer perceptron γ for
predicting dynamic latent code, and the decoder θ for predicting the deformation
are trained in a supervised fashion. An objective function modified from the
original evidence lower bound in [9] is used. It consists of three components:
reconstruction loss, motion loss, and Kullback–Leibler (KL) divergence loss. A
reconstruction loss is used to measure the difference between the reconstructed
mesh and the input ground-truth mesh:

Lrecon = ‖x1 − x̂1‖1. (4)

To encourage accurate estimation of motion pattern, we use L1-loss to penalise
the difference between the predicted mesh and its ground truth:

Lmotion = ‖xk − x̂1 ◦ φk‖1. (5)

The KL loss is leveraged to measure the divergence between the approximate
posterior and the prior distribution (i.e., standard Gaussian distribution):

LKL = DKL(qψ(z
s|x0)‖p(zs)) +DKL(qψ(z

t
0|x0)‖p(zt

0)). (6)

Finally, the total loss is a weighted sum of these components:

L = λ1Lrecon + λ2Lmotion + λ3LKL. (7)

The setting of λ1 = 1, λ2 = 2e−3, and λ3 = 1 for weighting coefficients is
employed, balancing the contribution of each term.

3 Experiments and Results

3.1 Dataset

In this study, we created a cohort of 6500 triangular meshes of the bi-ventricle
of the heart based on a subset of cardiac cine-MR imaging data available from
the UK Biobank (UKBB). The patient-specific meshes were reconstructed us-
ing [15]. Each patient contains 50 time points that cover the full cardiac cycle.
We randomly split the dataset into 5000/500/1000 for training, validation, and
testing, respectively.

3.2 Implementation Details

The framework was implemented using PyTorch on a standard PC with an
NVIDIA RTX 4090 GPU with 24GB memory. We trained our model using the
AdamW optimiser with an initial learning rate of 5e-4 and batch size of 128
for 500 epochs. The spatial and temporal latent dimensions were set at 16. The
down/up-sampling factor was four.
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3.3 Evaluation Metrics

We compared 4D CardioSynth with the state-of-the-art method, CHeart [12],
which uses recurrent neural networks to model joint spatiotemporal represen-
tations without disentanglement. We also compared our method to a vanilla
VAE [9] trained exclusively on the same datasets with solely single time points
(ED) to benchmark spatial representations without input from motion patterns.
Three metrics were used in the evaluation: (1) specificity [2], measured by the
distance between generated meshes and their nearest neighbours in the real
population; (2) diversity [10], measured by the fraction of real samples whose
neighbourhoods contain at least one virtual sample; and (3) generalisability [5],
formulated as the reconstruction error between the reconstructed and unseen
shapes. The Euclidean distance metric was used in all metric calculations.

3.4 Results

Quantitative Analysis of Spatial Features: Our quantitative analysis of
the spatial features of virtual populations generated by investigated methods is
summarised in Table 1, focusing on the ED time point to isolate spatial aspects
of cardiac morphology. It can be observed that 4D CardioSynth demonstrated
superior performance compared to CHeart across all metrics and structures.
With a biventricular specificity of 2.27±0.49 mm compared to 3.12±1.61 mm
of CHeart, our method achieved better fidelity, indicating that the shapes gen-
erated by our model more closely resemble the anatomical characteristics ob-
served in real populations. This improvement was consistent across individual
chambers. Regarding diversity, 4D CardioSynth achieved 48.3% for BiV com-
pared to CHeart (41.3%), with a 7% improvement in the anatomical variabil-
ity that models capture from the real population. Similar improvements were
observed for individual ventricles as well. Such results suggest that our disen-
tangled latent space approach allows more flexible modelling of diverse cardiac
anatomical structures. The results of generalisability evaluation also showed im-
provements with our method, achieving 1.58±0.43 mm compared to 1.73±0.58
mm for CHeart. This consistent improvement across all three metrics highlights
the advantage of our spatiotemporal disentanglement approach. Notably, the
conventional VAE model, which was trained exclusively on ED time point data,
demonstrated comparable performance in all metrics compared to our method,
indicating that 4D CardioSynth can avoid the degradation typically caused by
the spatiotemporal entanglement in the latent representation.

Temporal Prediction Performance: Further temporal analysis revealed con-
sistent performance advantages of our method throughout the cardiac cycle. Fig-
ure 2 illustrates the predictive error across all future time points given the input
of the ED time point for CHeart and 4D CardioSynth. The prediction referred to
here was formulated as a sequence completion task where the model takes shape
at the first time point (ED) as input and predicts the shapes of the full cardiac
cycle. Our model consistently achieved lower predictive errors than the CHeart
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Table 1. Quantitative analysis on the spatial features of virtual populations generated
by the investigated methods. The specificity and generalisability error are illustrated
as mean±std

Methods Specificity (mm, ↓) Diversity (%, ↑) Generalisability (mm, ↓)

LV RV BiV LV RV BiV LV RV BiV

VAE [9] 1.88±0.45 2.08±0.40 2.17±0.45 49.7 43.7 45.2 1.58±0.53 1.82±0.54 1.70±0.50

CHeart [12] 2.84±1.61 3.01±1.66 3.12±1.61 43.5 40.4 41.3 1.56±0.62 1.88±0.59 1.73±0.58
4D CardioSynth 1.98±0.48 2.17±0.45 2.27±0.49 49.2 44.7 48.3 1.47±0.44 1.68±0.48 1.58±0.43

throughout the cardiac cycle. This performance gap is particularly pronounced
during the early time points and late time points, corresponding to diastole
phases where anatomical precision is clinically essential. Both methods exhib-
ited increased predictive errors during the mid-cycle time points, which coincide
with the rapid deformation phases during systole. However, our method main-
tained a more stable performance with a narrower error variance. This stability
can be attributed to our spatiotemporal disentanglement strategy, which effec-
tively disentangles the complex cardiac motion patterns from spatial anatomical
features.

Fig. 2. Temporal analysis of the investigated methods. The top panel displays the
distributional comparison of predictive error across the cardiac cycle between CHeart
and our method. The bottom panel shows the LVV changes across the cardiac cycle of
the real distribution and virtual populations generated by our method and CHeart.

Clinical Relevance of Virtual Populations: To assess the clinical relevance
of the generated dynamic 3D+t virtual heart population, we measured each
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virtual patient’s cardiac parameters (i.e., left ventricle volume, LVV). Figure 2
presents the LVV measurements across all 50 time points for the real cohort,
virtual populations generated by 4D CardioSynth and CHeart. Both generative
models captured the pattern of ventricular volume changes during the cardiac cy-
cle, with volume reduction during systole and subsequent filling during diastole.
During the diastole phase, virtual hearts generated by 4D CardioSynth more
accurately represented the higher LVV and their associated variability across
the population. The median LVV values from our synthetic population closely
tracked the real data distribution, whereas the virtual population from CHeart
slightly underestimated volumes during these phases. Similarly, during the sys-
tole phase, 4D CardioSynth better captured the reduced variability observed in
the real data. The temporal coherence of volume changes in our virtual popu-
lation also more closely resembled the pattern observed in real cardiac cycles,
with smoother transitions between phases. This improved temporal modelling
can be attributed to our spatiotemporal disentanglement approach, which effec-
tively learns the underlying dynamics of cardiac motion for generating realistic
virtual hearts.

Visual Assessment of Generated Virtual Hearts To demonstrate the qual-
ity of our generated virtual patient of the heart anatomy, Figure 3 visualises a
representative heart shape generated by our method across different time points
of the cardiac cycle. The visualisation shows the plausibility of the generated
cardiac shape and the myocardium smoothly deforming through systole and di-
astole.

Fig. 3. Visualisation of a representative heart shape generated by our method at se-
lected time points throughout the cardiac cycle.

4 Conclusion

In this study, we presented 4D CardioSynth for synthesising dynamic 3D+t vir-
tual heart populations for in-silico trials. To learn the complex interplay between
cardiac structure and motion, we introduced a disentangled latent space within
a specialised VAE that independently captures spatial and temporal representa-
tions. This design enables separate control over anatomical variations and motion
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patterns, facilitating more flexible and targeted virtual population generation.
We compared our method to CHeart, with results demonstrating that our ap-
proach achieves better fidelity, diversity, and generalisability in terms of spatial
patterns, as well as the plausibility of the cardiac motion. Future work will focus
on extending the current anatomical representation to encompass the full heart
and more detailed structures, such as heart valves.
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