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Abstract. Existing studies on weakly supervised pathological tissue
segmentation predominantly rely on class activation maps (CAMs) to
generate pixel-level pseudo-masks from image-level labels. However, CAMs
tend to emphasize only the most discriminative regions, resulting in
boundary noise that undermines the quality of pseudo-masks and de-
grades segmentation performance. To address these challenges, we pro-
pose a novel weakly supervised pathological tissue segmentation frame-
work: Edge-semantic Synergy Fusion and Adaptive Noise-aware (ES-
FAN) mechanism. In the classification phase, the Edge-semantic Syn-
ergy Fusion (ESF) improves the quality of pseudo-masks by incorpo-
rating four synergistic components. The hybrid edge-aware transformer
refines boundaries, while the pyramid context integrator captures multi-
scale context. The context channel amplifier fine-tunes semantic fea-
tures, and the adaptive fusion gating balances feature map contribu-
tions using learnable spatial weights. In the segmentation phase, we
propose an Adaptive Noise-aware Mechanism (ANM) that incorporates
adaptive weighted cross-entropy, uncertainty regularization, and spatial
smoothing constraints to mitigate noise in pseudo-masks and enhance
segmentation robustness. Extensive experiments on the LUAD-HistoSeg
and BCSS datasets demonstrate that ESFAN significantly outperforms
state-of-the-art methods. The code is available at: https://github.com/
Sameer-815/ESFAN.
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1 Introduction

Accurate pathological tissue segmentation is crucial for quantitative diagnosis
and personalized treatment planning, particularly in characterizing tumor mi-
croenvironments. For example, spatial patterns of tumor-infiltrating lympho-
cytes (TILs), tumor-stroma ratio, and necrotic area proportion serve as impor-
tant prognostic biomarkers, providing valuable insights into tumor progression
and patient outcomes [QIITI3]. However, the scarcity of pixel-level annotated
datasets poses significant challenges for current deep learning approaches, as
the annotation of pathological images is prohibitively time-consuming and ex-
pensive, further complicated by inter-expert variability [7]. These limitations
have propelled weakly supervised learning as a research hotspot, demonstrat-
ing remarkable potential to achieve competitive segmentation performance us-
ing cost-efficient image-level annotations while substantially reducing annotation
burdens [2/J5/4].

Weakly supervised semantic segmentation (WSSS) primarily relies on class
activation maps (CAMs) [18] to generate coarse pseudo-masks. However, CAMs
tend to highlight only the most discriminative regions while overlooking target
boundaries. Existing enhancement strategies have attempted to mitigate these
limitations. For instance, MLPS [7] suppresses salient regions through masking
but neglects multi-scale morphological information. TPRO [I5] provides text-
based guidance yet remains insensitive to fine-grained edge details. Similarly,
ARML [6] enhances local responses but struggles with boundary delineation. To
address these challenges, we propose the ESF, which adaptively integrates high-
frequency edge features with semantic representations through dynamic gating.
Unlike conventional edge-aware methods that rely on static filters [13], ESF
leverages multi-scale contextual cues and hybrid edge detection to achieve precise
boundary localization. By incorporating channel-wise semantic attention, ESF
effectively balances global context and fine-grained boundary details, improving
CAMs completeness while enhancing segmentation accuracy.

The inherent noise in classification-generated pseudo-masks poses a critical
challenge for model correction during segmentation. Existing methods, such as
CPAL [10] or OEEM [8], struggle to suppress label noise and stabilize train-
ing. Our ANM addresses this by synergizing adaptive class cross-entropy, uncer-
tainty constraints, and boundary-aware smoothing. Through confidence-guided
dynamic optimization, ANM robustly mitigates pseudo-label inaccuracies.

The main contributions of our work are as follows:

e We identify that the primary challenges in weakly supervised pathological
tissue segmentation arise from imprecise boundary localization and inherent
noise in pseudo-masks generated by CAMs, which are often overlooked by
existing WSSS methods.

e We propose the Edge-semantic Synergy Fusion (ESF) to enhance CAMs
boundary precision and the Adaptive Noise-aware Mechanism (ANM) to
suppress pseudo-mask noise, significantly improving segmentation accuracy.



Weakly-Supervised Pathological Tissue Segmentation with ESFAN 3

e Our method achieves 79.29% mlIoU on the LUAD-HistoSeg dataset and
71.41% on the BCSS dataset, setting state-of-the-art performance with only
image-level labels, which substantially enhances the clinical applicability.

2 Method

2.1 Overall Framework

The framework of our proposed ESFAN is shown in Fig. [I] In the first stage,
image-level labels are fed into the classification network, where the ESF in-
tegrates edge enhancement and semantic attention before the final layer. The
output features from the last three layers are used to compute the classification
loss L, optimizing the network’s predictions. A fused class activation map is
then generated by combining the maps from the last three layers and applying
an argmax operation to create pseudo-masks. To mitigate noise in the pseudo-
masks, we introduce an ANM in the segmentation stage, significantly improving
segmentation accuracy.
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Fig. 1: Overall structure of our propoesd method. The classification network gen-
erates the pseudo-masks based on ESF, and the segmentation network optimizes
the segmentation results based on ANM.

2.2 Edge-semantic Synergy Fusion

The CAMs generated during the classification stage often exhibit imprecise
boundaries, resulting in significant loss of semantic information. To address this
issue, we propose an ESF strategy during the classification stage. The framework
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integrates four components: (1) a Hybrid Edge-Aware Transformer for bound-
ary detection, (2) a Pyramid Context Integrator for multi-scale feature fusion,
(3) a Context Channel Amplifier for semantic enhancement, and (4) an Adap-
tive Fusion Gating mechanism to balance contributions. Given an input feature
map X € REXHXW the network achieves pixel-level prediction through multiple
feature interaction, with core operations formulated as:

X = Frusion (Wrpar @ X 4+ Pooca ® X + pcr(X)), (1)

where the feature fusion convolution Fpusion employs 3 x 3 kernels for cross-
channel information integration, and ® denotes element-wise multiplication.
UygaT represents the feature map generated by Hybrid Edge-Aware Trans-
former, ¥cocoa represents the feature map generated by Context Channel Am-
plifier, and Wpcp represents the feature map generated by Pyramid Context In-
tegrator.

For Hybrid Edge-Aware Transformer, high-frequency features are extracted
using a fixed Laplacian operator:

1 1 010
i+1,5+1
Veage(X) = D D Wi Xpigry, Wi = (1411, (2)
i=—1j=—1 010

where p and ¢ represent the current pixel. The original features concatenated
with high-frequency components are processed through a 3 x 3 convolutional
layer to generate edge attention maps: Ygdge = 0 (Frdge ([X, PEdge(X)])), where
o represents the sigmoid activation. For channel-wise semantic enhancement,
global average pooling establishes channel dependencies:

1
HxW

Ze =

ZXc(iaj)akpsemantic - U(W25 (lec)) ) (3)

]

with a reduction ratio r = 16. The bottleneck structure consists of Wy € RE/mx¢
and Wy € REXC/" where § denotes ReLU activation. A Pyramid Context Inte-
grator captures morphological diversity in pathological tissues:

Ppcr = Fepp | Concat | X, U Upsample (AdaptiveGAP (X)) | |, (4)
ke{1,2,3,6}

where Fgpp, includes 1 x 1 convolution and batch normalization.

An adaptive fusion gating mechanism m = 0(Fgate(X)) balances contribu-
tions from edge and semantic features based on a Hybrid Edge-Aware Trans-
former and a Context Channel Amplifier. Fga¢e stands for global averaging pool-
ing and the convolution of 1 x 1.

WHEAT = me !pedge + Lpedg;e) LpCOCA = (1 - m) & Wsemantic + Wsemantic- (5)
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2.3 Adaptive Noise-aware Mechanism

The segmentation task faces inherent challenges such as feature ambiguity, noisy
pseudo-labels. Traditional denoising loss functions, with fixed weights, lack adapt-
ability across training phases. Moreover, existing methods often trade bound-
ary precision for noise reduction. To address these issues, we propose an ANM
consisting of: (1) Adaptive cross-entropy loss to emphasize reliable regions, (2)
Uncertainty-aware regularization to reduce ambiguous predictions, and (3) Spa-
tial smoothing to enhance boundary coherence. A dynamic weighting mecha-
nism adjusts component contributions based on training progress, ensuring both
noise suppression and boundary refinement. This unified approach significantly
improves segmentation accuracy and robustness without the need for manual
parameter tuning.

To enhance the model’s robustness against low-confidence pixels, we propose
an adaptive weighted cross-entropy loss. Given the model’s raw output p =
softmax(f) (before softmax transformation) and the target label y, we calculate
the maximum confidence for each pixel conf(x) = max(p(z)), representing the
highest probability among predicted classes. A confidence threshold 7 is set to
adjust the weight of each pixel in the loss function. Pixels with confidence higher
than 7 are assigned higher weights, while those below the threshold are weighted
less. To ensure the network learns sufficient features in the early stage, 7 is set
as an adaptive transformation ranging from 0.2 to 0.5. This design allows the
network to focus on feature learning initially, while imposing a greater penalty
on misclassifications in the later stage. The formula is as follows:

1 if conf(x) > T,
0 if conf(z) < 7.

weight(z) = { (6)

The weighted cross-entropy loss is then computed as:
1 .
Lee=—% > weight(x) - (y(x) log(p(x)) + (1 — y(x)) log(1 — p())),  (7)

where N is the total number of pixels, y(z) is the true label, and p(x) is the
predicted probability of pixel x.

To account for model uncertainty, especially in noisy or low-confidence ar-
eas, we introduce an uncertainty loss that measures pixel-wise confidence. The
uncertainty is derived from the maximum confidence of each pixel, and the loss
is defined as:

Ly = —% Z ((1 — conf(x)) log(1 — conf(x))) . (8)

This loss prioritizes more accurate predictions for confident regions while
suppressing predictions in uncertain areas, thereby enhancing model reliability.
To improve spatial consistency and reduce sensitivity to adjacent pixel pre-
dictions, we design a smoothing loss based on prediction probability gradients.
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Table 1: Comparison with state-of-the-art weakly supervised methods. The
results are reported in mean =+ std. * means statistical significant with other
methods(p < 0.05 under two-tailed T-test).

LUAD-HistoSeg

Method Backbone TE NEC LYM TAS mloU Dice

OEEM [§] ResNet38 76.964+0.27% 74.714£0.37* 72.304+2.20% 71.304+1.52* 73.9240.44* 84.9940.30*
MLPS [7] ResNet101 77.68+0.51% 76.95+0.58*% 72.404+0.84* 71.814+0.77* 74.714+0.41* 85.504+0.30*
HAMIL [17] ResNet50 76.631+0.37% 77.43+0.51*% 74.594+0.22* 70.974+0.95% 74.914+0.60* 85.731+0.25*
TPRO [15] MixTransformer 75.85+£0.47*% 81.94+0.95% 74.66+1.25% 71.274+0.46* 75.90+0.44* 86.16+0.28*
ARML [6] ResNest101 78.5440.28% 80.3440.27* 75.2940.45% 74.2940.48*% 77.114+0.33* 87.01+0.22*
ESFAN (phasel) ResNet38 77.61+£0.27 81.414+0.38 78.07+0.17 73.13+0.13 77.56+0.24 87.334+0.14

ESFAN (phase2) ResNest200 79.67+0.16 84.4710.51 78.27+0.25 74.7440.11 79.291+0.35 88.41+0.23
BCSS

Method Backbone TUM STR LYM NEC mloU Dice

OEEM [8] ResNet38 79.1140.37*% 72.884+0.79* 54.344+1.61* 63.074+2.43* 67.354+0.58* 80.1140.42*
MLPS [7] ResNet101 78.53+0.60* 71.744+0.69* 60.71+0.52* 60.51+1.11% 67.874+0.45* 80.62+0.31*
HAMIL [17] ResNet50 79.1140.34* 72.0440.50% 54.394+1.08% 60.214+0.47* 66.444+0.38* 78.924+0.37*
TPRO [15] MixTransformer 80.1040.59 73.34+0.21* 56.26+1.06% 64.26+1.39% 68.49+0.24* 80.95+0.19*
ARML [6] ResNest101 79.20+0.30*% 73.83+0.17* 60.25+0.14* 68.96+0.44 70.56+0.19*% 82.48+0.10*
ESFAN (phasel) ResNet38 72.8440.18 61.39+0.11 53.10+0.22 56.084+0.65 60.85+0.18 75.40+0.17

ESFAN(phase2) ResNest200 80.07+0.11 74.1140.17 62.7140.30 68.75+0.37 71.411+0.26 83.1610.15

This loss minimizes the gradient differences in horizontal and vertical directions,
formulated as:

1
£s=NZ(\p(x)—p(fﬂ+1)l+lp(x)—p(w+W)l), (9)
where W represents the width of the image, p(z) is the predicted probability
of pixel z, and |p(z) — p(z + 1)| and |p(z) — p(x + W)| denote the absolute
differences of first-order spatial gradients in the horizontal and vertical directions,
respectively.
The final loss combines these three components through a weighted sum:

L=a L+ P -Ly+7-Ls. (10)

To ensure the weights «, 3, and v adapt dynamically throughout training,
an Adaptive Weight Scheduler is implemented:
, i
’U}(’L) = Wstart + (wend - wstart) . z; (11>

where w stands «, 3, and +y initial weights are set to 0.4, 0.4, and 0.2, respectively.
And the target weights are set to 0.8, 0.1, and 0.1, respectively. i represents the
current epoch, and ¢ is the total number of training epochs.

3 Experiments

3.1 Datasets

LUAD-HistoSeg: This dataset comprises whole slide images (WSIs) of lung
adenocarcinoma from 54 patients, classified into four tissue types: tumor epithe-
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lium (TE), tumor-associated stroma (TAS), necrosis (NEC), and lymphocyte
(LYM). It includes 16,678 patches for training, 300 patches with pixel-level an-
notations for validation, and 307 pixel-level annotated patches for testing [7].
BCSS: Derived from breast cancer WSIs of 151 patients, this dataset features
four distinct categories: tumor (TUM), stroma (STR), lymphocyte infiltration
(LYM), and necrosis (NEC). It provides 23,422 patches for training, 3,418 pixel-
level annotated patches for validation, and 4,986 pixel-level annotated patches
for testing [1].

Table 2: Performance comparisons of each component of our method on BCSS
dataset.

Baseline ESF ANM TUM STR LYM NEC mloU Dice
v 77.93+£0.24 71.73£0.65 54.62+1.41 65.49+1.22 67.44+0.45 80.2340.36
v v 78.93+£0.37 73.43+0.11 61.32+£1.36 67.35+0.36 70.26+£0.34 82.354+0.25
v v’ 79.1240.26 73.874£0.27 62.414+0.14 66.57+0.44 70.49+0.12 82.5240.07
v v v’ 80.07+0.11 74.11+0.17 62.71+0.30 68.754+0.37 71.411+0.26 83.161+0.15

3.2 Experimental Details

All experiments were conducted using PyTorch 1.10.2 on an NVIDIA RTX
3080Ti GPU. In the pseudo-masks generation phase, ResNet38d [I2] is used
as the backbone with a learning rate of 1 x 1072, following a polynomial decay
over 20 epochs. For segmentation, the PSPNet model [I6] with a pre-trained
ResNest-200 [I4] encoder is employed, utilizing the SGD optimizer with a learn-
ing rate of 1 x 10~2, momentum of 0.9, and weight decay of 5 x 10~4, also for 20
epochs. During the inference stage, performance is evaluated using three met-
rics: per-class Intersection-over-Union (IoU), mean IoU (mloU), and mean Dice
coefficient.

3.3 Comparison Study

We compared our method with five other state-of-the-art weakly supervised
methods under the same experimental conditions. As shown in Table [T} our
method outperforms existing approaches by 2.18% mloU on LUAD-HistoSeg
and 0.85% on BCSS when using ResNeSt-200 as the backbone (p < 0.05 under
two-tailed T-test).

Notably, our method achieves superior performance across all categories on
LUAD-HistoSeg, surpassing the results of existing methods. This improvement
underscores the synergistic effect of the two modules: ESF refines the semantic
features and boundaries, while ANM mitigates noise and improves the robust-
ness of the masks. This combined effect leads to significant improvements in
overall segmentation accuracy, validating the complementary nature of these
components in our framework. A visual comparison is shown in Fig. 2]
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Fig. 2: Visualization of tissue segmentation on LUAD-HistoSeg (first two rows)
and BCSS (last two rows) datasets. (a) Test image. (b) Ground truth. (c) OEEM.
(d) HAMIL. (e) TPRO. (f) ARML. (g) Our method.

Table 3: Performance comparisons
of each component of ESF on BCSS
dataset.

Table 4: Performance comparisons
of each component of ANM on
BCSS dataset.

PCI HEAT COCA AFG mloU Lce Ly Lg mloU
v 70.4040.38 v 69.2040.49
v v 70.4440.32 v v 69.391+0.27
v v v 71.014+0.17 v v 69.771+0.35
v v v v’ 71.41+0.26 v v v 71.41+0.26

3.4 Ablation Study

To validate the effectiveness of the proposed method, we conducted extensive ab-
lation experiments on the BCSS dataset. Specifically, the ESF and ANM modules
were incorporated into the baseline model separately. As shown in Table [2] in-
tegrating the ESF and ANM modules improved the mIoU by 2.82% and 3.05%,
respectively. When both modules were combined, the mloU reached the cur-
rent highest value of 71.41%. These results demonstrate that both components
contribute significantly to segmentation performance, and their synergy further
enhances the overall efficacy of our approach.

At the same time, we conducted ablation experiments on ESF and ANM
components.The results in Table [3] and Table [4] indicate that each component
contributes positively to the final segmentation performance.
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4 Conclusion

Weakly supervised histological tissue segmentation faces two critical challenges:
the generation of low-quality pseudo-masks and the impact of noisy labels during
segmentation training. To address these issues, we propose the Edge-semantic
Synergy Fusion method, which enhances both tissue segmentation accuracy and
boundary precision by generating high-quality pseudo-masks. Additionally, we
introduce an Adaptive Noise-aware Mechanism to mitigate the effects of noisy
labels, effectively suppressing noise while preserving essential information from
other regions. Extensive experiments on two publicly available datasets demon-
strate the superior performance of our method, achieving state-of-the-art results
and contributing significantly to the field of computational pathology.
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