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Abstract. CardioMetabolic Risk (CMR) assessment requires numer-
ous risk factors derived from anthropometric measurements, sphygmo-
manometry, and blood tests. Deep Learning enables CMR factors to
be acquirable from a medical image (e.g., fundus), however, model-per-
factor approach is insufficient solution in cost-efficiency. It is also chal-
lenge to predict multiple factors simultaneously from a single image,
since the CMR factors are inter-correlated among themselves but also
correlated with fundus features in various depths. To address this chal-
lenge, we propose Self-Propagative multi-task Learning (SePL) which
utilizes comparatively simple 6 CMR factor predictions as prior knowl-
edge to guide predicting more complex CMR factors. The proposed SePL
propagates its initial predictions to a latent space, enriching unimodal
features into multimodal representation. A discriminative mixture of ex-
perts leverages the relevant prior for 9 CMR factor predictions. The
training and testing of SePL use 5,232 sets of fundus images and corre-
sponding CMR factors. Experimental results demonstrate that the pro-
posed SePL outperforms the existing methods up to 10.46% of AUC
and 8.07% of MAE across all 15 CMR factor predictions. The code is
available at https://github.com/shko0215/SePL.
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1 Introduction

CardioMetabolic Risk (CMR) assessment requires anthropometric screening,
sphygmomanometry, and blood test to measure CMR factors [3,7,17]. The ex-
aminations are costly and invasive, and the result is variable depending on the
examinee condition [14,15]. Recent advances in Deep Learning (DL) techniques
shed light on non-invasive CMR factor acquisition [5, 6, 13|, however, deriving
diverse CMR factors from single image is challenging due to their heterogeneous
nature and disparate levels of inter-factor dependencies. The diversity of CMR
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prediction task and correlation leads existing studies to design task-wise DL
networks. This Single-Task Learning (STL) approach necessitates separate net-
works for each CMR factor, resulting in increased computational complexity and
redundancy for comprehensive CMR assessment. To this end, a novel method
for CMR factor prediction is necessary to leverage inherent correlations among
CMR factors while reducing computational cost.

Previous studies on DL-based CMR factor prediction have predominantly
relied on STL, treating each factor as an independent modeling task. The first DL
approach utilizes Inception-v3 to predict gender, age, Systolic/Diastolic Blood
Pressure (SBP/DBP), Body Mass Index (BMI), HbAlc, and smoking status [13].
The six individual models undergo 10 times of sampling and outputs average
for each factor, leading to excessive computational overhead. Comprehensive
CMR factor prediction adopts Mobilenet-v2 to mitigate high computational costs
for predicting relative fat mass, glucose, insulin, sex hormone binding globulin,
estradiol, testosterone, total/HDL/LDL-cholesterol, and triglyceride in addition
to previous study [5]. The model outputs are averaged over 4 different fundus
images per person, without reducing the number of models per factors. Systemic
health features are predicted with Densenet-201 by switching 4 regression tasks
to binary classification tasks [6]. The comprehensive CMR assessment is limited
to binary outputs of various factors. Previous studies struggle to integrate dozens
of classification and regression tasks, extract task-wise features from single data
source, and utilize the inter-factor correlations.

To address these challenges, we propose Self-Propagative multi-task Learn-
ing (SePL) for enriching single-source features by propagating prior knowledge
to simultaneously predict 15 CMR factors. A shared feature extractor learns
robust feature representation from fundus images, while significantly decreasing
network size. Anthropometric heads initially predict 6 CMR factors. Anthropo-
metric measures are relatively simple to predict, as these are readily available
and have correlation [4,8,13]. Self-propagation utilizes these initial predictions
to serve as prior knowledge for subsequent 9 CMR factor estimations, leveraging
the intrinsic relation between the priors and the other CMR factors [1, 2, 10].
Discriminative Mixture of Expert (DMoE) fusion selectively integrates image
features and anthropometric prior to generate enriched feature representations.
Task-specific gating networks employ a soft-gating strategy to aggregate diverse
perspectives of enriched feature representations. Each selective expert network
learns a unique combination of multimodal feature representations. The remain-
ing task heads receive a weighted sum of expert outputs to predict 9 additional
CMR factors. The main contributions are as follows:

1. To the best of our knowledge, this study is the first to integrate multi-task
learning, multimodal learning, and mixture of experts for comprehensive
CMR factor prediction.

2. The proposed self-propagation first predicts a subset of CMR factors and uti-
lizes these predictions to enhance signle-source features. The complex CMR
factors benefit from multimodal feature representations without requiring
additional input.
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3. The proposed DMokE fusion enables the network to selectively combines im-
age feature with propagated prior knowledge, providing discriminative fea-
ture representation for complex CMR factors.

4. Our comprehensive experimental evaluation demonstrates that the proposed
SePL surpasses state-of-the-art methods across 15 CMR factor predictions
with reduced computational costs. This enables broader prediction coverage
for comprehensive DL-powered CMR assessment in a lightweight manner.

2 Methods

2.1 Dataset and Data Preprocessing

A total 5,232 sets of de-identified fundus image pairs and corresponding CMR
factors are collected from people who visited the Health Promotion Center at
Ajou University Hospital between January 2020 and June 2020. The fundus im-
ages have a resolution of [2592 x 1728] in DICOM file format. CMR factors are
obtained from blood tests, and their basic statistics are summarized in Table 1.
This study was approved by the Institutional Review Board (IRB) at Ajou Uni-
versity Medical Center (AJOUIRB-DB-2024-330).

Table 1: Descriptive statistics of CMR factors in Ajou dataset

Gender Age Weight Height BMI2 Waist SBP DBP
(year) (kg) (cm)  (kg/m”)  (cm) (mmHg) (mmHg)
Mean  Male: 49.77 67.94 167.03 24.22 85.90 115.91 74.18
Std 3,218 10.61 12.58 8.59 3.24 7.88 13.99 10.44
Min Female: 19 34.20 141.30 14.60 60.20 74.00 43.00
Max 2,014 89 144.80 192.80 41.80 130.00 190.00 114.00
T-chol TG Glucose BUN Creatinine Uric Acid HbAlc
(mg/dL) (mg/dL) (mg/dL) (mg/dL) (mg/dL) (mg/dL) (%)
Mean 193.83 128.12 99.15 11.73 0.87 5.30 5.69
Std 37.25 78.64 18.96 3.54 0.23 1.37 0.68
Min 81.00 22.00 53.00 3.90 0.39 0.60 4.50
Max 458.00 988.00 344.00 77.60 10.83 11.00 12.50

CMR factors consist of gender and 14 continuous factors. Gender is encoded
as a binary variable, where 0 and 1 indicate female and male, respectively. Con-
tinuous factors have different scales and contain outliers, as shown in Table 1.
The scale disparity causes imbalanced model convergence across CMR factors, as
large-scale factors dominate the total loss. We standardize continuous CMR fac-
tors with the interquartile range, which is less sensitive to extreme values [12,16]:

y— Q2(y)
yscaled - S 7 N A 7\ 1
@) - Qi) .
where 1, Q2, and Q3 are the first, second (median), and third quartiles of each

CMR factor y in the training set. This transformation reduces disparities across
CMR factors while mitigating the impact of outliers, as illustrated in Fig. 1.
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Fig. 1: Distribution of scaled results for 14 continuous CMR factors. Log trans-
formation is applied to enhance clarity and readability for visualization.

Fundus image quality varies due to participant-related factors (e.g., eyelashes,
blinking) and lighting conditions. Low-contrast images obscure important fundus
structures such as blood vessels, optic disc, macula, fovea, and retina. It is a
challenge to predict various CMR factors with limited features of single fundus
image. We adopt Contrast Limited Adaptive Histogram Equalization (CLAHE)
to enhance local contrast and mitigate illumination inconsistencies [18,19]. The
resultant images undergo resizing [256 x 256] and center-cropping [224 x 224] to
decrease computational cost and remove unnecessary background pixels.
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Fig.2: The overall architecture (a) of the proposed SePL. The gating network
and expert network are illustrated in (b) and (c), resepectively.
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2.2 Preliminary: Multi-task Definition

This study aims to design a lightweight DL model capable of simultaneously
predicting 15 distinct CMR factors from a single fundus image, as illustrated in
Fig. 2(a). Let the set of tasks be denoted as {7;}}2;. The task T} is formulated
as a gender classification problem with the corresponding label y; € {0,1}.
The tasks {T;}12, are defined as regression problems, each associated with a
continuous label {y;}15, € R. The tasks are categorized into two groups: the
anthropometric factor predictions {T;}%_; (gender, age, height, weight, BMI,
waist circumference), and the complex CMR factor predictions {7;}15..

2.3 Feature Extraction and Anthropometric Prior Prediction

The feature extractor F(-) takes a fundus image z € RT*WXC to produce a
high-dimensional feature representation z = F(z), where z € R?. Each anthro-
pometric head predicts a single anthropometric factor from z:

4; = Wiz + by, iE{l,...76}7 (2)

where W, and b; are learnable parameters for each anthropometric head to
predict {7;}%_;. The prediction outputs {9;}$_, are concatenated into single-
dimensional vector, forming the anthropometric prior knowledge p. The image
feature z and prior p are propagated into Discriminative Mixture of Experts
(DMOoE) fusion module to extract enriched feature representations for predict-
ing more complex factors {T;}12..

2.4 Discriminative Mixture of Experts

Gating Network The gating network is designed to evaluate the multimodal
features and dynamically assigns soft weights to expert networks, as shown in
Fig. 2(b). This soft mixture approach ensures that all experts contribute to the
complex CMR factor prediction tasks {T}}15, with varying importance. Each
task-specific gating network G; maps both the image feature z and anthropo-
metric prior p into multimodal feature space, yielding a gating weight w;;:

w;; = Softmax (G;(z,p)), (3)

where G; consists of learnable parameters W; and b;. The gating weight w;;
represents the contribution of expert E; in predicting a specific CMR factor
T;. The gating network learns optimal contribution of each expert network to a
given CMR factor, ensuring that relevant feature representations are prioritized.

Expert Network The expert network specializes in learning a subset of CMR,
factors with propagated multimodal features, as illustrated in Fig. 2(c). The
calibration of anthropometric prior is necessary, as the contribution of each an-
thropometric attribute is dissimilar to predicting different CMR factors. The
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attentive weighting mechanism is designed to dynamically determine which at-
tributes are most relevant for each expert Fj;:

p; = ReLU (W2 (SoftmaX(Wlp +b)® p) + bg), (4)

where ® denotes element-wise multiplication, and p; is the calibrated prior for
expert I;. The individual expert E; maps the image feature z and calibrated
prior p;, generating enriched feature representation m;:

mj:Ej(Z7pj)7 (5)

where E; comprises learnable parameters W; and b;, followed by ReLU activa-
tion function. Each expert F; produces j different multimodal feature represen-
tations, which are later combined by weighted fusion.

Discriminative Fusion and Self-propagative Prediction The final feature
representation h; for each remaining task {7;}12. is obtained by a weighted sum
of gating weights w;; and multimodal representations m;:

K
j=1

The gating weights are modified according to the specific anthropometric at-
tributes which are most relevant to the target tasks {7;}}2.. This discriminative
mixture of experts fusion ensures that the model benefits from multiple expert
opinions while adapting dynamically to specific task requirements. The fused
feature h; undergoes task-specific heads to generate the predictions for {7;}15.
via g; = W;h; + b;, where W; and b; are learnable parameters.

2.5 Loss Function

The proposed SePL is trained in an end-to-end manner by aggregating the task-
specific losses. The total loss L among the ground truth y; and prediction g; of
T; is computed as:

LN g =g, fori=2,...,15, (™)

15 — [y1 log (o(9; 1—y1)log (1 —o(1
L= L) Li{ s 1)+ )l (L)

where N is the number of samples, j indexes individual samples, and ¢ indicates
the sigmoid function. BCE with Logits Loss aims to solve gender classification
task, whereas MAE Loss targets to minimize discrepancy between y; and g;.
MAE is chosen over MSE to reduce sensitivity to outliers. Weighted loss strategy
is not adopted, as we scaled the CMR factors in the preprocessing stage.
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3 Results

3.1 Experimental Setting

Our experiments divide 5,232 set of fundus images and CMR factors into train-
ing, validation, and test subsets with a ratio of 7:1:2. The proposed SePL adopts
ConvNeXt [11] as a feature extractor and 4 experts for DMoE fusion. Model
training utilizes Adam optimizer [9] with a learning rate of 1 x 10~% and batch
size of 64 for 100 epochs. An early stopping algorithm prevents the model over-
fits to training set, by terminating the training process when the validation loss
increases for five consecutive epochs. Our proposed method is implemented with
PyTorch and CUDA libraries on a hardware environment comprising an Intel i9
CPU, 32GB RAM, and RTX 3090Ti GPU.

The proposed SePL is compared to the previous state-of-the-art methods
[5,6,13]. The performance evaluation utilizes Accuracy (Acc) and Area Under
the ROC Curve (AUC) for a gender classification task, and Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) for 14 regression tasks. We also
calculate the FLoating point Operations Per Second (FLOPS) and the number
of parameters to evaluate computational costs.

3.2 Experimental Results

The proposed SePL consistently outperforms STL baselines across all CMR fac-
tors, as represented in Table 2. Gender classification task benefits from combined
supervision of Multi-Task Learning (MTL) framework. The SePL achieves an
Acc of 87.30% and an AUC of 0.8635, representing 9.72% and 10.46% improve-
ments compared to the second best method, respectively. The shared feature
extractor learns more robust and enriched feature representation by aggregating
gradient signals from 15 prediction tasks. Our proposed method consistently im-
proves MAE 8.07% and RMSE 5.46% in average among the 14 regression tasks,
compared to the second best method. Creatinine shows the highest improvement
with MAE 18.18% and RMSE 12.50%, whereas waist circumference shows the
lowest improvement with MAE 0.94% and RMSE 0.11%. It is worth noting that
the proposed SePL improves 336.58% and 318.71% in the number of parameters
and GFLOPs, respectively.

In-depth performance analysis indicates that the MTL and self-propagation
with DMoE operate as intended. The anthropometric CMR factors indicate
MAE 8.45% and RMSE 7.43% enhancements in average, surpassing the sec-
ond best method. Direct supervision of the shared feature extractor facilitates
more precise learning for these tasks. The other CMR factors also denote MAE
7.50% and RMSE 4.54% in average, outperforming the second best method. The
performance gain is lower than anthropometric factors, since the other factors
are predicted with self-propagated anthropometric priors which are model pre-
dictions. The predicted values inherently contain errors, introducing additional
noise into the DMoE fusion. The relatively lower RMSE improvement demon-
strates the affect of noise, as it is sensitive to larger deviations.
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Table 2: Performance comparison of different methods on Ajou dataset. The
best and second best results are highlighted.

Inception Mobilenet Densenet Proposed
v3 [13] v2 [5] 201 [6] SePL

Gender 76.21% (0.74) 79.56% (0.77) 77.27% (0.75) 87.30%(0.86)
Age 13.99 (15.32) 3.67 (4.88) 3.60 (4.89) 3.34 (4.40)
Height 43.39 (44.14) 6.26 (7.95) 6.40 (8.08) 5.60 (7.12)
Weight 13.77 (17.42) 10.29 (12.83) 10.69 (13.48)  8.99 (11.80)
Waist 10.40 (12.69) 6.44 (8.40) 6.43 (8.39) 6.37 (8.38)
BMI 2.98 (3.86) 2.65 (3.39) 2.68 (3.46) 2.50 (3.30)
SBP 15.62 (19.56) 11.11 (13.96) 11.21 (14.05) 10.46 (13.33)
DBP 19.47 (22.05) 8.19 (10.27) 8.22 (10.29) 7.74 (9.88)
Glucose 14.20 (20.27) 11.82 (19.01) 12.02 (19.13) 11.33 (18.32)
HbAlc 0.91 (1.15) 0.43 (0.73) 0.41 (0.73) 0.39 (0.72)
Creatinine 0.40 (0.44) 0.13 (0.18) 0.14 (0.18) 0.11 (0.16)
BUN 2.91 (3.67) 2.73 (3.51) 2.59 (3.40) 2.52 (3.35)
Total cholesterol 37.67 (47.76)  31.03 (39.35)  30.85 (39.35) 30.46 (38.91)
Triglycerides 59.28 (77.98)  58.87 (77.55)  57.96 (77.10) 49.72 (75.88)
Uric Acid 1.83 (2.21) 1.04 (1.33) 1.09 (1.37) 0.93 (1.19)
7# Params 3260M 133.2M 271.4M 30.51M
GFLOPS 426 18.8 65.8 4.49

Table 3: Performance comparison of w/ and w/o the proposed strategies. The
best and second best results are highlighted in bold and underline, respectively.

Metrics SePL w/o MTL, SePL w/o SePL
Self-propagation Self-propagation

Gender Acc (AUC) 57.21% (0.50) 87.12% (0.86) 87.30%(0.86)
Age 5.37 (7.11) 3.43 (4.57) 3.34 (4.40)
Height 7.28 (8.96) 5.62 (7.10) 5.60 (7.12)
Weight 11.34 (13.86) 9.04 (11.87) 8.99 (11.80)
Waist 6.57 (8.40) 6.41 (8.35) 6.37 (8.38)
BMI 2.71 (3.47) 2.53 (3.30) 2.50 (3.30)
SBP 11.87 (14.71) 10.60 (13.49) 10.46 (13.33)
DBP 8.77 (10.94) 7.78 (9.95) 7.74 (9.88)
Glucose 12.06 (20.57) 11.45 (19.20) 11.33 (18.32)
HbAlc 0.42 (0.77) 0.40 (0.72) 0.39 (0.72)
Creatinine 0.14 (0.19) 0.11 (0.16) 0.11 (0.16)
BUN 2.60 (3.53) 2.57 (3.48) 2.52 (3.35)
Total cholesterol 30.86 (39.32) 31.32 (39.93) 30.46 (38.91)
Triglycerides 52.79 (78.61) 50.33 (76.15) 49.72 (75.88)
Uric Acid 1.13 (1.39) 0.94 (1.21) 0.93 (1.19)
# Params 417.3M 27.83M 30.51M
GFLOPS - 67.3 4.49 4.49

We further evaluate the proposed SePL to demonstrate the effect of MTL
and self-propagation, as detailed in Table 3. The adoption of MTL improves
the overall performance significantly with MAE 17.36% and RMSE 16.40% in
average. In particular, gender and age represent 52.28% and 56.56% improve-
ment in MAE. The large performance gains denote that shared feature extractor
captures useful common features by leveraging cross-task correlations. However,
MAE and RMSE of total cholesterol worsen 1.49% and 1.55%, indicating that
total cholesterol is sensitive to the noise inherent in the individual tasks and
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requires additional information for prediction. Self-propagation with DMoE fu-
sion further improves MAE 1.21% and RMSE 1.27% in average across all CMR
factors. Especially, contributed 9 factors show better performance improvement
with MAE 1.39% and RMSE 1.69% in average, whereas 6 anthropometric factors
represent average improvement of MAE 0.93% and RMSE 0.63%.
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