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Abstract. Medical anomaly detection has emerged as a promising so-
lution to challenges in data availability and labeling constraints. Tra-
ditional methods extract features from different layers of pre-trained
networks in Euclidean space; however, Euclidean representations fail to
effectively capture the hierarchical relationships within these features,
leading to suboptimal anomaly detection performance. We propose a
novel yet simple approach that projects feature representations into hy-
perbolic space, aggregates them based on confidence levels, and clas-
sifies samples as healthy or anomalous. Our experiments demonstrate
that hyperbolic space consistently outperforms Euclidean-based frame-
works, achieving higher AUROC scores at both image and pixel levels
across multiple medical benchmark datasets. Additionally, we show that
hyperbolic space exhibits resilience to parameter variations and excels
in few-shot scenarios, where healthy images are scarce. These findings
underscore the potential of hyperbolic space as a powerful alternative
for medical anomaly detection. The project website can be found at
https://hyperbolic-anomalies.github.io
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1 Introduction

Anomaly detection and localization plays a critical role in various domains, par-
ticularly in medical imaging, where distinguishing and localizing between normal
and anomalous samples is crucial. A widely adopted approach involves train-
ing models exclusively on healthy images, identifying any deviation from this
learned distribution as anomalous [32]. This strategy mitigates challenges asso-
ciated with the scarcity of annotated lesion images while reducing annotation
costs and biases inherent in training [Artificial Intelligence (AI)l models.

* These authors are joint last authors.
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Among the most effective anomaly detection techniques are projection-based
methods, which leverage pre-trained networks to map data into abstract rep-
resentations, thereby enhancing the separation between normal and anomalous
samples. One-class classification [29)23] defines a compact, closed distribution
for normal samples, treating any deviations as anomalies. The teacher-student
framework [3519] employs a student network to learn normal sample representa-
tions from a teacher, using their representation discrepancy to identify anoma-
lies. Memory Bank methods [8I2822] store normal sample prototypes and apply
statistical modeling or distance metrics to detect anomalies.

A common feature across these methods is the extraction of representations
from specific layers of a pre-trained network. Each layer encodes hierarchical
attributes, but conventional approaches rely on Euclidean space, which may
not be the best option to capture hierarchical relationships [27J30]. This can
lead to suboptimal feature representations and reduced anomaly identification
performance.

Hyperbolic space, the geometry of constant negative curvature, is well suited
to represent hierarchical structures due to its exponential expansion properties
[6]. Recent advances have demonstrated the effectiveness of hyperbolic embed-
dings in domains such as few-shot learning [I8], representation learning [TTIT212T],
and [Out-of-Distribution (OOD)|detection [33/14]. Given the hierarchical nature
of medical image structures, including disease organization, progression, and
anatomical relationships, we hypothesize that hyperbolic space can effectively
embed these spatial relationships to enhance anomaly localization. This work
aims to answer the following research question: Can hyperbolic space effec-
tively represent hierarchical features and improve anomaly localiza-
tion performance?

To address this question, we propose a novel framework that generate syn-
thetic anomalies, extracts multi-layer features from a pre-trained network and
projects them into hyperbolic space. These hyperbolic embeddings are aggre-
gated by weighting features based on their confidence, specifically considering
their distance from the origin [I813], which encodes hierarchical depth. Finally,
we construct a hyperplane in hyperbolic space to distinguish between normal
and anomalous samples.

We validate our framework on multiple medical benchmark datasets includ-
ing different imaging modalities such as [Magnetic Resonance Imaging (MRI)}
[Computer Tomography (CT)| [Optical Coherence Tomography (OCT)| and X-
Ray. Our results demonstrate that hyperbolic space consistently outperforms
Euclidean space for anomaly detection and localization. Additionally, we find
that hyperbolic space exhibits robustness to parameter tuning by adaptively
learning the optimal curvature, further improving performance. Notably, our
approach achieves state-of-the-art results in few-shot settings, where healthy
images are scarce or unavailable.

The paper is organized as follows: In section [2 we introduce the motiva-
tion behind our framework and provide its mathematical formulation. Section
details the datasets, implementation, and training specifics, along with evalu-
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ation metrics. Section [4 presents experimental findings, comparing hyperbolic
and Euclidean-based methods and analyzing performance under few-shot con-
ditions. Finally, section [§] summarizes our contributions and discusses broader
implications.
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Fig. 1. Overview of the anomaly localization methodology in the hyperbolic space,
from medical anomaly synthesis to classification.

2 Methodology

This section details our framework to anomaly localization in hyperbolic space,
illustrated in fig. [T} In section 2.1 we describe our method for synthesizing med-
ical anomalies. Section describes how we obtain patchified features from a
pre-trained network. Section outlines the mapping of patchified Euclidean
features to hyperbolic space, followed by the hierarchical aggregation process.
Finally, in section [2.4] we present our hyperbolic classifier, which leverages these
aggregated features for classification.

2.1 Synthesis Anomalies

Given a training set of normal images z; € RoxWoxCo

with synthetic anomalies. These include
— CutPaste [23], random patches extracted and blended in another location
with Poisson image editing [3113];
— Gaussian Intensity [37], intensity variations introduced via Gaussian fil-
tering to simulate anomalies such as tumors or cysts;
— Source Deformation [3], geometric deformations applied by shifting points
within a mask, controlled by a scaling parameter.

, we generate images

2.2 Feature Extraction

Features are extracted from the anomaly image z/ using a pre-trained network,
typically a ResNet-like backbone. We select a subset of feature levels L, corre-
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sponding to different layers in the network hierarchy. At each level, local features
are computed by aggregating patch-wise neighborhoods using adaptive average
pooling. The resulting feature maps are then upsampled to the highest spatial
resolution among them for later aggregation to give a feature map f;; € RC.

2.3 Euclidean to Hyperbolic Features

Hyperbolic geometry, characterized by constant negative curvature, effectively
models hierarchical structures [27J30]. We employ the Lorentz model due to its
simple expression for geodesics [2I] and numerical robustness [26]. Minkowski
space is the space of vector z = (zp,z) € R x R™ equipped with the Lorentz
inner product (z,2z'); = z - 2’ — 20%(.

The Lorentz hyperboloid model L of n-dimensional hyperbolic space with
curvature ¢ is the manifold that satisfies (z,2z); = —1/c with zy > 0. As the
feature vectors lie on the Euclidean space we use the the exponential map to
projects them onto the hyperboloid

‘ sinh(y/c [|v]|)
x = expm,(v) = cosh(Vc|[v]|, )z + NALD v, (1)
so f;; = expmg (fi1), where O = (1/4/c,0) is the hyperboloid origin.

We project the hyperbolic features to a lower-dimensional hyperbolic space,
and adapt the features to the target domain with a hyperbolic linear layer [4],
as the network is biased from the pre-training dataset i.e., ImageNet [10] which
is suboptimal in medical contexts. We aggregate features from different hierar-
chical levels to a single point in hyperbolic space z; using a weighted Lorentzian
centroid [21]:

!
z; = c—— with z,= Zwi,zfi,l~ (2)

c i
IZA8

The weights w; ; are the Euclidean Ly norms of features f; ; after transformation
to the Poincaré ball, which are connected to model confidence [I8IT3IT4].

2.4 Hyperbolic Classifier

We classify anomalous features using distances to hyperplanes in the Lorentz
model. The hyperplane in L. perpendicular to w is given by

Hy ={y e LZ[(w,y). = 0}, (3)

and the distance of a point z from the hyperplane reads

sinh ! (\/E<w’ Z>L) ‘ (4)

[[wily

i (2, Hy) = %

The patch-wise logit and probability for an image x; with representation z; to
be anomalous are then given by

Cu(2) = sign((w, 2, )Wl du(zi, Ha),  pu(z) = [1+ expllu(z))] . (5)
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The model constructs a hyperplane for robust class discrimination by optimizing
it through binary cross-entropy

L= —-E;~allog(pw(zi))] — Ez;nn[log(l — pw(z:))] (6)

where A and A are sets of anomalous and normal pixel centroids computed via
eq. , respectively.

3 Experiments

This section describes how hyperbolic space is evaluated for anomaly detection
and localization.

3.1 Datasets

We follow BMAD [2], a recent benchmark for medical anomaly detection and lo-
calization spanning different imaging modalities. It features defined dataset splits
to facilitate reproducibility and prevent leakage. We only deviate by excluding
the pathology dataset Camelyonl6 due to known difficulties with memory, and
by resizing all images to 224 x 224 pixels. The five datasets used in this work
are summarized in table 11

BraT$S2021 [I] is a widely used dataset for brain tumor segmentation and
classification in [MRI, BMAD considers the FLAIR sequences for anomaly de-
tection.

BTCV [20] and [Liver Tumor Segmentation (LiTs)| [5] focus on liver
[CT] imaging. BMAD uses the anomaly-free BTCV set for training and LiTs for
evaluation.

The [Retinal Edema Segmentation Challenge (RESC)| [I6] provides
[OCT] images for retinal pathology analysis.

OCT2017 [17] is a large-scale OCT dataset for retinal disease classification,
comprising one normal category and three medical conditions. The latter are
treated as a single abnormal class.

RSNA [34] contains chest X-rays labeled with one normal category and eight
conditions, all of which are treated as a single abnormal class.

Table 1. Count of normal and anomalous samples across BMAD dataset splits.

Dataset ~ BraTS2021 BTCV+LiTs RESC 0CT2017 RSNA

Spht \L norm. anom. norm. anom. norm. anom. norm. anom. norm. anom.

Train 7,500 0 1,542 0 4,297 0 26,315 0 8,000 0
Valid 39 44 93 73 45 70 8 24 70 1,420
Test 640 3,075 833 660 1,041 764 242 726 781 16,413




6 Gonzalez-Jimenez et al.

3.2 Experimental Setup

We use a pre-trained WideResNet50 [36] as feature extractor in all experi-
ments. To ensure a fair comparison with baseline methods, we refrain from using
data augmentation, applying only ImageNet-based normalization [I0]. The pre-
trained network is frozen, and only the hyperbolic components are trained. We
extract features from layer_2 and layer_3, with a dimensionality of 1024, which
are subsequently patchified using a patch size of 3.

The curvature parameter is trainable and initialized to ¢ = 1. Training is
conducted for 50 epochs across all datasets using the Adam optimizer with a
learning rate of 1072 and a batch size of 32. All experiments are performed on
a single NVIDIA Tesla V100 GPU with 32 GB of memory.

We evaluate both image-level (detection) and pixel-level (localization) perfor-
mance using Image-AUROC (Ipuroc) and PixellAUROC (Pauroc) in percent-
age, respectively. In addition to our hyperbolic approach, we benchmark against
several state-of-the-art Euclidean anomaly detection and localization models,
including RD4AD [9], STFPM [35], PaDiM [g], PatchCore [28], and CFA [22].

Finally, we test for statistical significance using the Mann-Whitney U test to
compare the AUROC distributions between two models. We assume statistical
significance for p < 0.05 and denote this with bold.

4 Results

Table 2. Comparison of anomaly detection and localization performance across medi-
cal datasets. The values represent the mean, the minimum (subscript), and maximum
(superscript) over 5 different random seeds.

BraT$S2021 BTCV + LiTs RESC OCT2017 RSNA
Methods

Tauroc Pauroc Tauroc  Pauroc Iauroc  Pauroc Tauroc Tauroc

RD4AD 89.523%:12 96.3655-3% 59.145443 91.4091-39 88.2530:32 96.1855-38 94.8837-58 67.6385-73
STFPM 84.2585-82 96.0395-¢3 61.4855-87 96.2695-19 87.2687-33 94.9633:93 91.8835:2% 69.3142:35

PaDiM 79.6252:9% 94.2293-85 50.9123-28 90.4859:33 75.157$:37 91.2298:32 90.1729:78 74.4874°73
PatchCore  92.029%:43 95.5392-38 59.3329-47 95.0093-9% 90.5490:54 95.8792:2% 97.4598-19 75.6772:87
CFA 84.9933:33 96.6185:52 53.8935:65 97.403738 72477555 92495 3] 79.1073:83 66.6556:50
Ours 92.4953.0% 9556555 65.948338 9649538 90.7185:7] 95.3203:08  97.850382  79.4653:72

Table [2| presents the experimental results for anomaly detection and local-
ization. We observe acceptable agreement of the methods based on Euclidean
geometry with the results reported by the BMAD in table 2 [2]. Among these,
PatchCore achieves the most consistent performance across datasets, although
the somewhat lower performance for BTCV+HLiTy could be interpreted as sen-
sitivity to a distribution shift. In contrast, the proposed hyperbolic framework
shows the best performance on whole images across all datasets, even if this is not
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always statistically significant, and it remains robust even for BTCV-HLITY At
the pixel level, the hyperbolic approach remains competitive with other meth-
ods, even though different Euclidean baselines outperform it in specific cases.
However, in medical practice, misdiagnosing an entire image is generally more
problematic than minor pixel-wise mismatches.

4.1 Ablation Study on Model Parameters

We conduct ablation studies on curvature, patch size, and dimensionality of the
hyperbolic space using the BraTS dataset. Figure [2] presents the impact of these
variations on performance.

We first investigate the role of curvature by fixing it to ¢ = {0.01,0.1, 1, 10, 100}.
The first plot indicates that constraining the curvature leads to a decline in
performance, with better results observed at lower curvature values. This un-
derscores the advantage of a learnable curvature, which allows the model to
adaptively optimize the geometry of the representation space for anomaly iden-
tification.

Next, we analyze the effect of the patch size {1,2,3,4,5,6} when aggregat-
ing local features. Increasing the patch size negatively impacts both Iauroc
and Pauroc. This suggests that fine-grained feature extraction is preferable
for capturing subtle anomalies, whereas overly large patches may dilute local
information critical for accurate anomaly localization.

Lastly, hyperbolic space has been shown to efficiently encode representa-
tions in lower-dimensional embeddings, making it advantageous for memory-
constrained scenarios [T9/T4]. To evaluate this, we reduce the feature dimen-
sionality to {512,128,16,8,2}. The last plot reveals that while Iayroc is more
sensitive to extreme dimensionality reduction, Payroc remains relatively stable.

——— - - -
% 96 05| ]
% 94 - T — Image
= //\ 60| —=— Pixel ]
2r L %190 . . ] . .
1071 10! 2 4 6 400 200 0
Curvature Patch Size Dimensionality

Fig. 2. Ablation study on key components of our hyperbolic framework: fixed curva-
ture, patch size variations, and hyperbolic layer dimensionality.

4.2 Few-Shot Anomaly Detection and Localization

We further evaluate the robustness of our framework in a few-shot setting, where
only a limited number of normal images are available for training. We experi-
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ment with {1, 3,5,10,25} normal images and compare our performance against
PaDiM [§] and PatchCore [28]. The results in Figure [3| demonstrate that our hy-
perbolic model significantly outperforms both baselines, particularly in extreme
data scarcity scenarios.

BraTS2021 BTCV+LiTs RESC
Ofpr—t— ] ¥ :?g><",7—‘ .
L 80F .
8 70 |- -
S 50 1
= .’."/'/‘
60 | 1 N T —y——
et | 40} ] 6o 1
0 1‘0 2‘0 0 1b Zb 0 1‘0 2‘0

1 1

0 10 20 0 10 20 0 10 20

# Samples # Samples # Samples
—e— Ours —o— PaDiM —e— PatchCore

Fig. 3. Few-shot evaluation with varying normal image counts {1,3,5,10,25}. Our
hyperbolic model outperforms PaDiM and PatchCore in scarce data scenarios. Error
bands are obtained with five different random seeds, without changing the training set.

5 Conclusions

In this work, we introduced a hyperbolic anomaly detection and localization
framework that leverages the unique geometric properties of hyperbolic space to
enhance both classification and localization of medical anomalies.

Our evaluation across multiple medical imaging datasets demonstrates that
our method consistently outperforms state-of-the-art anomaly identification ap-
proaches in terms of Ixyroc, and is competitive with the best ones for localiza-
tion as demonstrated by Payroc. Additionally, we show that hyperbolic embed-
dings retain strong performance in low dimensions enabling efficient deployment
in resource-constrained environments, and consistently outperforms Euclidean
baselines in few-shot data regimes.

One key area for future investigation is the incorporation of features from
earlier layers of the model, which could help leverage the hierarchical informa-
tion embedded throughout the network. Although fully hyperbolic networks have
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been shown to outperform hybrid architectures [4I7I33], this remains a develop-
ing research area, and challenges related to stability and reproducibility persist.
Furthermore, while our study focused on feature-based anomaly baselines, ex-
panding the comparison to reconstruction-based [25/24] or gradient-based [15]
with other performance metrics could provide a more comprehensive assessment
of the model’s effectiveness.

Additionally, integrating multi-modal data, such as radiology reports or ge-
nomic information, could provide a richer anomaly characterization, improving
interpretability and clinical utility.

Our work contributes to the advancement of Al-driven medical anomaly de-
tection and localization, with a particular emphasis on improving the accuracy
and localization of anomalies, especially in few-shot settings. These findings have
the potential to significantly enhance medical image quality assessment and fa-
cilitate the quantitative analysis of rare diseases, ultimately leading to more
precise and data-efficient diagnostic models for clinical applications.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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