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Abstract. Ventricular tachycardia screening is crucial for early inter-
vention and prevention of life-threatening cardiac events. Myocardial
scar topology on late gadolinium enhancement (LGE) MRI offers de-
tailed structural insights that may be closely associated with the mech-
anisms underlying ventricular tachycardia. However, accurate charac-
terization presents challenges due to the substantial shape variability
of myocardium, indistinct boundaries, small scar volumes, and poten-
tial issues with image quality. In this study, we present PolarNet, a
novel framework for automatic scar segmentation and topological pat-
tern characterization in polar coordinates. The framework incorporates
a boundary-aware segmentation branch that explicitly models bound-
aries essential for scar characterization (endocardium, scar-start, scar-
end, and epicardium), ensuring geometric consistency and anatomical
coherence. Our method outperforms nnU-Net in both scar segmenta-
tion and topological pattern characterization. Code will be available at
https://github.com/Sheng-xc/VTS_PolarNet.

Keywords: Ventricular Tachycardia - LGE MRI - Scar Topology - Polar
Transformation

1 Introduction

Ventricular tachycardia (VT) is a potentially life-threatening arrhythmia charac-
terized by rapid and irregular heartbeats originating in the ventricles [13], often
associated with post-infarction myocardial scarring. Prophylactic implantable
cardioverter-defibrillators (ICD) are recommended for post-infarct patients with
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Fig. 1: Illustration of a myocardial scar with heterogeneous topological character-
istics. Adapted from Fig. 1A and 1B of JACC: Cardiovascular Imaging, Vol. 14,
de Chillou et al., "Magnetic Resonance Imaging Screening for Postinfarct Life-
Threatening Ventricular Arrhythmia", pp. 2479-2481, Copyright (2021), with
permission from Elsevier and the authors [1].

low left ventricular (LV) ejection fractions [14]. However, ICD implantation of-
fers no benefit to patients without VT episodes while exposing them to potential
complications, whereas LVEF-based criteria omit many at-risk individuals [17].
Therefore, more refined evaluations are needed to assess the risk of VT.

Myocardial scar tissue plays a critical role in the development of VT. Scars
create heterogeneous substrates that can lead to re-entrant circuits, which are
the primary mechanism of VT [3]|. The topological transmurality of infarct scar,
reflecting its relative position within the myocardial wall, may serve as an im-
portant marker for VT risk in postinfarct patients eligible for prophylactic ICD
implantation [1]. As shown in Fig. 1, endocardial mapping of myocardial scar
involves projecting scar tissue onto the endocardial shell. Each point on this
projected scar surface is further classified into subtypes based on its topological
relationship to the endocardial and epicardial boundaries [1].

To perform the projection, scar segmentation is essential. Numerous method-
ologies have been adapted for this task, ranging from traditional image process-
ing techniques such as thresholding and region growing, to classical machine
learning algorithms like SVMs and CRFs [9], and more recent deep learning
architectures [10], including UNet-based models [15] and transformer-based net-
works [11]. Boundary quality has received limited attention, with some studies
applying morphology-based [11] or signed-distance based [18] methods. Nonethe-
less, existing methods still struggle to accurately localize scars within the very
thickness of myocardium on LGE MRI, largely due to the irregular morphology
and blurred boundaries of pathological scars [12]. These inherent complexities
often lead to fragmented segmentation outputs that lack anatomical consistency,
making them unsuitable for applications in myocardial scar topology analysis.

Following scar segmentation, topology-based scar characterization emerged
as a critical but underexplored issue. Current research in myocardial scar char-
acterization for VT risk assessment predominantly relies on intensity-based mea-
sures of scar heterogeneity. For instance, methods based on maximum pixel signal
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Fig.2: The proposed framework for endocardial mapping of myocardial scar,
consisting of 3 steps: 1) Anatomy-informed polar transformation, 2) Boundary-
aware segmentation, 3) Projection-based subtype classification.

have been adopted to identify core and border zone for arrhythmogenic sub-
strates on semi-automatically [4] or automatically [16] delineated myocardium
and scar. Similarly, standard deviation-based thresholding methods for dense and
nondense scar quantification have been performed on VGG16-initialized UNet
scar segmentations [5] for prediction of major adverse cardiac events. However,
these approaches do not capture the topological heterogeneity of scars, which
may offer a complementary perspective for VT risk stratification.

In this work, we propose PolarNet, a novel topology-aware framework de-
signed for boundary-sensitive myocardial scar characterization. By leveraging
polar transformation, the framework enables more intuitive endocardial map-
ping of myocardial scar. Its dual-branch architecture integrates pixel-wise scar
segmentation with explicit boundary regression, thereby enhancing anatomical
coherence and segmentation accuracy. To the best of our knowledge, this is the
first deep learning-based framework designed to automate the characterization
of scar topological patterns, offering clinically valuable insights for VT screening.

2 Methodology

Fig. 2 presents the proposed PolarNet framework, which is designed to address
the clinical demands of myocardial scar topological pattern characterization
by unifying multi-class segmentation and boundary-aware regularization. The
methodology is structured around three pillars: anatomy-informed polar trans-
formation (§ 2.1), dual-branch segmentation and boundary regression (§ 2.2),
and projection-based subtype classification (§ 2.3).

2.1 Anatomy-Informed Polar Transformation

The polar projection nature of endocardial mapping [2] motivates us to directly
address the problem in the polar coordinate system for efficiency. To align with
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the radial geometry of LV, we transform an input MRI slice I € R¥*W into
a polar representation I,olar € REX® centered at the LV centroid predicted by
an anatomical segmentation model trained on public LGE MRI datasets. This
transformation is implemented via grid sampling [§], using a normalized mesh
grid G € [—1, 1]RX@X2. Each target coordinate (r;, 6;) in the polar output Ipgiar
corresponds to a sampling location in the original MRI slice I, computed as

. 9 . 9
Glij) = (p-;cos< B L sin g;>),
with p € [0, 1] controlling the field-of-view based on the anatomical segmentation.

2.2 Boundary-Aware Scar Segmentation

PolarNet employs a dual branch architecture inspired by structured surface seg-
mentation for retina OCT [6]. It is built on a shared auto-configured residual en-
coder nnU-Net [7] backbone to extract hierarchical latent features F € RE*©xC,
These features are passed through task-specific convolutional layers to produce
logits for segmentation and boundary prediction.

Segmentation Branch. The standard segmentation branch predicts pixel-wise
probabilities P, € RE*XO>4 for scar, healthy myocardium, left ventricle blood
pool and background. A dice and cross-entropy loss is used for optimization:

Escg = ECE + EDicc-

Boundary Branch. This branch predicts four boundaries critical for topolog-
ical pattern characterization of scar: endocardium (k = 1), scar-start (k = 2),
scar-end (k = 3), and epicardium (k = 4). While contour regression alone can-
not segment scar due to its irregular shape, it guides attention to boundaries.
This branch outputs boundary probabilities Qeontour € RF*©** via a row-wise
softmax, where Qy[r, 0] represents the probability of boundary k at angle 6 oc-
curring at radial position r. Cross-entropy loss is adopted to penalize deviations
from the ground-truth boundary positions:

H

1 4 O-
£contour = _@ Z IOg Qk Yk ] 9]

k=1 6=0

where Y[f] is the ground-truth radial position of boundary k at angle 6. As
in [6], the predicted boundary position S;[f] is obtained using a soft-argmax
operation: S;[0] = Zf;ol rQy[r, 8]. To ensure topological constraints, we apply
a recursive operation: Sy 1[0] = Si[0] + ReLU(Sy11[0] — Si[0]), where Sy is the
final boundary position for boundary k at angle 6. This ensures that boundaries
are ordered correctly (i.e., endocardium < scar-start < scar-end < epicardium).
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Fig. 3: Scar subtype classification via projection under polar transformation

For the endocardial boundary, epicardial boundary and scar envelope, pseudo

Cartesian dice scores are computed to formulate the pseudo dice (p-dice) loss:

> -y min(Ys[0], S5[6])* — max(Y[6], Sa[6))?
71(Y3[9P = Y2[0]?) + (S3[0]? — S2[6]?)

> oo min(Y[6], Se[6])?
k21:4 9@ 01 Yy [9] + Sk[eP

»Cpseudo dice =2 —

further enforcing alignment between the predicted and ground truth boundaries
across coordinate systems.

2.3 Projection-Based Scar Subtype Classification

The polar segmentation output is projected along the radial axis to characterize
the topological distribution of myocardial scar. As illustrated in Fig. 3, this pro-
jection enables classification of each angular position 6 into healthy myocardium
or one of four scar subtypes—transmural, endocardial, epicardial, and intramu-
ral—based on whether the radial line intersects the scar region and whether the
scar contacts the endocardium and/or epicardium. This subtype classification
facilitates quantification of scar topological heterogeneity.

3 Experiments

3.1 Materials

Data Acquisition and Pre-Processing. We collected LGE MRI data within
one month prior to ICD implantation from 181 post-infarct patients across
five centers. All images were resampled to an unified resolution of 1.36 mm x
1.36 mm, with an intensity normalization via Z-score. The dataset was randomly
devided into 126 training, 18 validation and 37 test cases.
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Implementation. All experiments were conducted on a workstation equipped
with an AMD EPYC 7742 64-Core Processor and an NVIDIA GeForce RTX
3090 GPU. The framework was implemented using the PyTorch library and
integrated into the nnU-Net framework for efficient data processing and model
training. The training process utilized stochastic gradient descent with a linear
decay rate for optimization. All models were trained for 200 epochs with a batch
size of 8.

Gold Standard and Evaluation. All LGE MRIs were manually labeled by
an experienced cardiologist to delineate the myocardium and scar regions, which
served as the ground truth for scar segmentation. The projected scar label was
generated based on the manual annotations along 192 evenly spaced radii from
the LV centroid, with five classes: endocardial scar, transmural scar, intramural
scar, epicardial scar and healthy myocardium.

For the evaluation of scar pattern characterization, we measured performance
metrics on the projected cylindrical map. Specifically, Dice, sensitivity (SEN) and
specificity (SPE) were calculated for the binary classification map, where all scar
subtypes were aggregated to represent the myocardial area at risk. To address
the class imbalance inherent in the distribution of topological scar subtypes, we
computed micro-averaged SEN and SPE, as well as the generalized Dice score
(GDice)—the micro-averaged counterpart of Dice—for the multi-class classifica-
tion of distinct scar subtypes.

For the evaluation of the conventional scar segmentation task, we computed
standard segmentation metrics, including Dice, Hausdorff distance (HD), average
symmetric surface distance (ASSD), SEN, and SPE.

3.2 Results

Results on the Task of Scar Subtype Classification and Quantification.
Table 1 presents the results of the ablation study (all metrics evaluated in polar
coordinates). Regarding the quantification of scar subtypes, the proposed Polar-
Net achieves the best GDice (0.548 £0.134) and SEN (0.561 £ 0.131), the latter
being particularly important for screening applications in clinical practice. Com-
pared to nnU-Net, the drop in performance observed in Polar-nnUNet may stem
from the loss of fine-grained details introduced during the coordinate transforma-
tion. However, this limitation is effectively mitigated by PolarNet’s dual-branch
architecture, which explicitly incorporates boundary supervision. Notably, the
addition of the p-Dice loss further enhances performance, contributing 1.1% and
2.2% gains in mean GDice and SEN, respectively. SPE remains consistently
high (> 94%) across all methods, with no statistically significant differences ob-
served. For the overall myocardial area at risk, performance remains comparable
or slightly improves after polar transformation. Addition of the boundary branch
further enhances Dice and SEN. While p-Dice has limited effect on Dice/SEN;,
it helps recover SPE (> 86%), which otherwise declines without it.

Fig. 4 visualizes the results of scar subtype classification and quantification
in a representative subject. Each ring represents a short-axis slice, ordered from
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Table 1: Evaluation on the task of scar subtype classification and quantifica-
tion. Results shown in (mean + standard deviation). Bold indicates best per-
formance, underline indicates second best performance, asterisk (*) indicates the
statistically significant difference (p < 0.05) given by a Wilcoxon signed-rank test
between our proposed model and each comparison model.

Model Model variants Scar subtypes Myocardial area at risk

polar contour p-dice GDice SEN SPE Dice SEN SPE

nnU-Net [7] « « « 0.542*  0.532 0.950 0.793 0.783 0.891
+0.125 +0.121* £0.020 +0.165* +0.175 +0.084
0.521  0.517 0.944 0.796  0.795 0.879
Polar-nnUNet v % 40144 20137 £0.022 £0.169° +0.169  £0.093
0.537  0.539 0.943 0.806 0.832 0.806
PolarNet (w/0 Lpseudo aice) ¢/ Yo X 10.125° £0.117° +0.020 £0.163 +0.152 +0.163
0.548 0.561 0.942 0.807 0.827 0.860
PolarNet (Proposed) v/ Y Y 1013440131 +0.019 £0.173 £0.164 +0.098

Ground Truth nnU-Net Polar-nnUNet PolarNet (W/o Lseydodgice) ~ PolarNet (Proposed)
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Fig. 4: Qualitative results on a typical subject for the task of scar subtype clas-
sification and quantification. Presented in a bullseye-like layout, each ring repre-
sents the classification output from a short-axis slice, with color-coded subtypes.
Our proposed method (last column) yields more consistent predictions of scar
presence (non-green) and improved detection of intramural scars (orange).

apical (innermost) to basal (outermost). Despite the challenge, our proposed
model produces more consistent predictions of scar presence and more accurate
identification of non-transmural subtypes—particularly intramural scars, which
are key substrates for re-entrant VT. Notably, all methods struggle in the basal
inferolateral region, likely due to image blur inherent in LGE MRI.

Results on the Task of Scar Segmentation. Our projection-based subtype
classification relies on accurate scar segmentation, making segmentation quality
a critical prerequisite. Table 2 summarizes the ablation study results (all metrics
evaluated in Cartesian coordinates). Except for HD, the full model outperforms
all ablated models, with Dice and SEN showing statistically significant gains,
and ASSD improving consistently though not always significantly. The higher
HD is not significant and mainly caused by outliers. Each component contributes
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Table 2: Quantitative evaluation on the task of scar segmentation. Results shown
in (mean + standard deviation). Bold indicates best performance, underline in-
dicates second best performance, asterisk (*) indicates the statistically significant
difference (p < 0.05) given by a Wilcoxon signed-rank test between our proposed
model and each comparison model.

Model Metrics
Dice HD(mm) ASSD(mm) SEN SPE
nnU-Net [7] 0.558 13.446 3.606 0.552  0.999

+0.148" +13.034 +£4.082" 40.165" +0.001

0.561 13.516 3.387 0.558  0.999
+0.137" £14.826 +4.313  £0.150" £0.001

0.572 13.469 3.379 0.582  0.999
£0.137" £15.005 +4.990 £0.151" £0.001

0.581 13.614 3.340 0.599 0.999
4+0.139 +15.076  +3.934 +0.150 +0.001

Polar-nnUnet

PolarNet (w/0 Lpseudo dice)

PolarNet (Proposed)

LGE image Ground Truth nnU-Net Polar-nnUNet PolarNet PolarNet
(W/0 Lpseudo dice) (Proposed)

Mid slice Basal slice

Apical slice

Fig.5: Qualitative results on typical slices for the task of scar segmentation.
Yellow arrows indicate outputs likely to result in implausible topological pattern
characterization. The proposed method (last column; scar in red, myocardium
in green) yields segmentations more suitable for scar topology analysis, showing
better continuity, improved localization (rows 1-2), and sharper edge (row 3).

incrementally to the overall performance. Fig. 5 visualizes segmentation results
on typical slices. Polar transformation improves the overall ability to distinguish
scar regions, while the addition of the boundary branch reduces discontinuities
and sharpens scar edges. These improvements help explain the superior perfor-
mance observed in scar subtype classification and quantification.
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4 Conclusion

Our study presents an automated framework to address the scar topological
pattern characterization in LGE MRI, which is valuable in VT screening. Un-
like conventional segmentation tasks, this work emphasizes the critical examina-
tion of intricate topological characteristics of myocardial scar tissue—a chal-
lenging endeavor that remains largely unexplored in existing literature. The
framework’s performance was quantitatively assessed using established metrics
including GDice and sensitivity etc., while qualitative validation through visual
analysis demonstrated alignment with clinical expert assessments. However, we
recognize that this specialized clinical application may require the development
of more sophisticated evaluation methodologies beyond the current conventional
metrics. It should be noted that the present validation was conducted exclu-
sively on a dataset consisting of patients with LVEF < 35%. Future work may
extend to multi-center post-infarction cohorts to improve the generalizability of
our method and enable deeper analysis for enhanced clinical relevance.
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