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Abstract. Computed tomography (CT) reconstruction from X-ray im-
ages possesses significant advantages, including lower radiation exposure,
reduced costs, and better accessibility than direct CT imaging. However,
insufficient effective input samples caused by data volume under the mod-
erate level or occlusion of partial soft tissues by skeletal structures in
X-rays often hold back achieving high-quality image reconstruction. Ad-
ditionally, contrasted with voxel-level differences, the texture and struc-
ture features are significant for image reconstruction. In virtue of these
challenges, this study proposes an efficient approach named Dual-branch
CT Network (DCT-Net). It first integrates a conditional diffusion model
for data augmentation, which mitigates data scarcity and achieves bone
suppression. Subsequently, a dual-branch network in DCT-Net is lever-
aged to parallel process both augmented and raw data. In the framework,
a perceptual loss based on high-level semantic features performs as the
contrastive loss. Furthermore, it combines the voxel-level and adversarial
losses to optimize the generator. However, the discriminator optimization
only depends on the adversarial loss. Experimental results on two pub-
lic datasets demonstrate that DCT-Net outperforms the state-of-the-art
works, appearing to have promising potential among clinical applications.

Keywords: Computed tomography - X-rays - Dual-branch network -
3D reconstruction - Diffusion model - Contrastive learning.

1 Introduction

Computed tomography (CT) generates cross-sectional images from multi-angle
X-ray projections, providing visualization of bones and soft tissues with higher
resolution than X-ray images. However, considering its risky dose of radia-
tion [1,2], low-dose scanning approaches could be viewed as the alternative man-
ners [3-5], which still require hundreds of X-ray projections from a CT scanner.

* This work is sponsored in part by National Natural Science Foundation of China
(No.62106175, 62020106004 and 92048301).
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Fig. 1. Motivation for data augmentation in CT reconstruction. The arrows in different
colors refer to the performance of the corresponding strategy. The red rounded rectangle
refers to the data augmentation strategy in this study.

Recently, CT reconstruction from X-ray images has arisen, focusing on its ef-
fectiveness in cost-saving and low-dose imaging [6]. Generally, the encountered
problems for CT reconstruction with X-rays could be categorized into the sparse
view [7-11] and limited sample size. The prior usually adopts neural radiance
fields (NeRF) to construct a continuous 3D volume representation. The latter
generally employs a convolutional neural network (CNN) and generative adver-
sarial network (GAN) to learn the mapping from 2D to 3D, as shown in Fig. 1.
Neither (a) nor (b) and (c) could handle the requirement for a large amount of
input data, the reconstruction of organ details, and artifacts.

For the CNN-based methods in Fig. 1(b), they extract image features through
multiple convolutional layers [12], and learn the mapping from X-rays to CT [13—
16]. However, the local receptive fields of convolutional operations also limit the
capturing of global 3D structural information, leading to artifacts or anatomical
structures missing. Contrastively, NeRF employs a continuous function [9,17],
which could produce relatively high-resolution results by leveraging X-rays taken
from different angles [8,18]. NeRF estimates density values based on the light
propagation in space and the interactions among surrounding tissues. Neverthe-
less, NeRF-based methods are data-hungry and highly rely on the amount of
multi-view X-rays.

GAN utilizes adversarial training, which adopts generator and discriminator
to compete against each other to produce more realistic images [19-24]. Ad-
ditionally, GAN could effectively capture high-dimensional data distributions,
making it well-suited for CT generation [20]. However, it often focuses on voxel-
level restoration but ignores high-level semantic information. Moreover, due to
the occlusion of soft tissues by the skeletal structure, the reconstruction of organ
details could be viewed as a challenge.

Inspired by GAN and contrastive learning, this study proposes a refined
framework DCT-Net, which integrates a pre-trained conditional diffusion model
(CDM) and contrastive loss as Fig. 1(d). Initially, the CDM based on the orthog-
onal X-rays is employed to generate bone-suppressed X-rays, which reflect the
positions and features of the internal organs [25]. Then, a dual-branch framework
is designed to play a role in measuring the effect of data augmentation. Subse-
quently, to leverage the high-level semantic information of structure and texture
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Fig. 2. The schematic of the DCT-Net framework. PA denotes the posterior-anterior
view; Lat denotes the lateral view. (a) Generate bone-suppressed X-ray images from a
pre-trained conditional diffusion model conditioned on input X-ray images. (b) Dual-
generator reconstruction GAN processes the X-ray images. (¢) Multi-path loss module.
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embedded in the CT generated by the proposed dual-branch network, percep-
tual loss is applied as contrastive loss [26]. In addition, the final multi-path loss
module also integrates reconstruction loss, projection loss, and adversarial loss
to enhance the robustness and generalization ability. The main contributions of
this work are listed below:

1. A conditional diffusion model is used in generating bone-suppressed X-rays
to improve the visibility of the internal organ structures in CT and overcome
data scarcity of input X-rays;

2. A dual-branch framework for CT reconstruction is proposed, which sepa-
rately processes the original and bone-suppressed X-rays via a dual-generator
reconstruction GAN, improving reconstruction accuracy and robustness;

3. A multi-path loss module is applied to balance the voxel-level details and
high-level semantic features.

2 Method

The framework proposed in this study is named Dual-branch CT Network
(DCT-Net). As illustrated in Fig. 2, it leverages a pair of input orthogonal X-
ray images (ypa, YLat) to generate CT images.
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2.1 Bone Suppression Conditional Diffusion Model

Due to the data scarcity of input X-rays and the occlusion of internal organs
caused by bones, a CDM is employed for data augmentation, enabling the model
to focus on the texture, structure, and location of internal organs. Given that
x and y are the images in the image set X and Y, respectively. Then, DCT-
Net generates bone-suppressed X-rays X = {apa, Trat} from orthogonal X-rays
Y = {ypa,YLat}-

Diffusion Model. Diffusion models include forward and reverse processes [25,
27,28]. The forward process ¢ gradually perturbs an initial data distribution
xo ~ ¢(xo) using a predefined Markov chain, progressively adding Gaussian
noise over T steps until 7 ~ N(0,I), which shown as (1):

gz | 21) =N <$t§ V1= thtfhﬁtl) (1)

where (; denotes the noise scheduling coefficient at timestep ¢, controlling the
noise injection rate; I denotes the identity matrix. The reverse process py aims
to recover the original data xo from the noise xp, which is formulated as (2):

Po (w11 | 24) = N (21-15 g (w0, 1) , T (24,1)) (2)

where py and Xy denote the mean and covariance derived from a U-Net-based
noise prediction network ey parameterized by 6 [29].

Conditional Diffusion Model. As the bone-suppressed X-ray x is generated
according to the corresponding X-ray y, the reverse process is formulated as
po(zo.r | y), with the original forward process ¢ preserved. The conditional
reverse transition could be (3):

p@(xt—l | -rt7y) = N(Z‘t—l;ﬂ'ﬁ(xt)yvt); Eg(l't,y,t)) (3)

During the training process, pairs (zo,y) ~ ¢(zo,y) are sampled, and ¢ learns
to predict noise conditioned on y, where xy denotes the ground truth bone-
suppressed X-ray. The joint distribution could be formulated as (4):

T
po(zor | y) = pler) [ [ po(wir [ 24,y) (4)

2.2 Dual-generator Reconstruction GAN

The GAN in DCT-Net uses two generators to process X and Y, of which the dis-
criminator optimizes one of the generators that processes Y, shown as Fig. 2(b).
Specifically, pra € {zrLa,yLa} and Prat € {ZTrats Yrat}. G(X) and G(Y) denote
the generated CT from X and Y, respectively.

Generator. To address the limitation of capturing the latent relationship be-
tween two views with two encoders that increases the complexity of model [21-
23], each generator in DCT-Net is based on an encoder-decoder, involving a fea-
ture fusion module v and self-attention. Ying et al. proposed a skip connection
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to adaptively transmit the low-level features during the encoding process [22].
To this end, the fused features of orthogonal X-rays could be defined as (5):

ffusion = 7(f1> f2) = FC([EC(PLA)7 EC(pLat)D (5>

where FC(-) and EC(:) denote fully connected layer and encoder, respectively.
[EC(pLa ), EC(pLat)] represents the concatenation of the features from pr,a and
PLat- For the decoder, self-attention is incorporated with each layer to enhance
the capture of long-range dependencies in the reconstructed CT features, as
shown in (6):

DC; = SA (Deconv (DC;_4)), [1=1,2,...,L (6)

where Deconv(-) denotes deconvolution; SA(-) represents self-attention; and DC;
denotes the output of the I-th decoding layer. The generated CT denotes as DCy,.
Discriminator. The discriminator in GAN outputs a scalar to determine the
fidelity of an input sample [30]. This setting provides a unified judgment for the
image without considering the significant bias on average for local areas. Hence,
the output of the discriminator is constructed as (7), allowing the generator to
obtain fine-grained feedback:

DY) = {dj o} sn (7)

where ¢’ denotes G(Y") or the CT ground truth GT'; v € {axial, coronal, sagittal};
D represents the discriminator; m and n denote the patches of one CT horizontal
and vertical slice, respectively; d; . represents the probability of sub-region in
j-th slice of G(Y') from the sample distribution, as viewed from v.

2.3 Multi-path Loss Module

In DCT-Net, a multi-path loss module is designed to integrate perceptual loss,
voxel-level loss, and adversarial loss.
Contrastive loss. Regarding G(X) is expected to suppress skeletal information,
rather than enforcing a strict pixel-wise match with G(Y), DCT-Net introduces
the perceptual loss as the contrastive loss to measure high-level semantic and
perceptual differences between them.

Specifically, G(Y) and G(X) are projected onto standard anatomical planes
to obtain the Raw and Aug images, respectively. Suppose that ¢7(z) is the
ReLU activation of the i-th layer in a network ¢ for an image z under view v.
When ¢ corresponds to a convolutional layer, ¢¥(z) is a feature map of shape
C; x H; x W;. The perceptual loss between Raw and Aug on the same plane is
calculated as (8):

1

o, 194 (Raw) — 67 (Aug)| ®)

Ns
0’ (Raw, Aug) = Z
i=1

where Ng denotes the number of slices in network ¢. ¢¥(Raw) and ¢} (Aug)
represent the activation values in i-th layer of ¢, extracted from Raw and Aug
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on the projection plane with the same view v. Contrastive loss £ o+, is computed
as the arithmetic mean of the perceptual loss across the three planes.
Voxel-level Loss. It includes reconstruction 1oss £;.ccon and projection loss £y,
ensuring voxel-wise consistency not only in 3D space but also across projected
2D slices. Reconstruction loss employs mean squared error (MSE) to minimize
voxel-wise differences. Projection loss enforces consistency by computing the
average L1 loss across axial, coronal, and sagittal planes.

Adversarial Loss. Following the LSGAN [31], the adversarial loss of DCT-Net
is defied as (9):

(D) = %[EG%MCT)(D(GT 1Y) —1)? (98)
+ ]EYNp(Xray)(D(G(Y) | Y) - 0)2]
€G) = 3By pixaan) [(DIGY) | ¥) = 1] (90)

where GT ~ p(CT) represents the real CT samples, and Y ~ p(Xray) repre-
sents the input X-rays samples. Discriminator loss £(D) comprises two terms to
encourage it to classify GT and penalize it for classifying G(Y"). Generator loss
function ¢(G) encourages the discriminator to classify G(Y) with high fidelity.
Overall Training Objective. It is defined as (10):

D* = arg mDin Al(D) (10a)
G* = arg mCi'n [Alg(G) + Xoleontr + Az3lrecon + )\4£p7"oj] (10b)

where A1, A2, A3, and A4 are hyper-parameters to adjust the weight of loss terms.

3 Experiments

3.1 Datasets and Experimental Settings

LIDC-IDRI Dataset. The dataset contains 1,018 lung CT samples [32]. In this
study, 854 samples are used for training, 72 for validation, and 92 for testing.
CTspinelK Dataset. 784 CT images [33] are selected from this dataset and
divided into 650 training samples, 60 validation samples, and 74 testing samples.
Implementations and Training Settings. In the experiments, the input X-
rays synthesized by the digitally reconstructed radiographs technology are re-
sized to 128x128 [34], and the output CT is resized to 128 x128x128. The im-
plementation is based on the PyTorch framework with Adam optimizer, where
the initial learning rate is set to 0.0002 and momentum parameters 5; = 0.5,
B2 = 0.999. Furthermore, due to the constraints of GPU memory, the batch size
is set as 1. The training process is carried out for 100 epochs to ensure stable
convergence based on the validation set. All the experiments are conducted on
a workstation with an NVIDIA GeForce RTX 3090 Ti 24GB GPU card.
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Table 1. Experimental results and ablation study on LIDC-IDRI dataset.

Method PSNR (1) SSIM (1) LPIPS (1)

PerX2CT [37] 27.248 4+ 0.004 0.637 £+ 0.005 0.253 4+ 0.003
X2CT [22] 26.769 =+ 0.040 0.622 + 0.001 0.307 + 0.002
RT-SRTS [38] 25.311 £ 0.010 0.570 £ 0.001 0.323 £ 0.003
X-Recon [23] 27.120 4+ 0.001 0.619 + 0.002 0.292 4+ 0.004
SACT-GAN [21] 27.054 £ 0.010 0.596 + 0.003 0.322 + 0.020
w/o Dual-branch 27.226 4+ 0.030 0.620 + 0.005 0.285 + 0.001
w/o Recon-GAN 27.562 & 0.001 0.648 + 0.008 0.251 + 0.004
W/0 Lperceptual 27.602 + 0.003 0.651 + 0.003 0.283 + 0.001
DCT-Net (ours) 27.928 + 0.040 0.703 £ 0.001 0.221 £+ 0.004

Table 2. Experimental results on CTspinelK dataset.

Method PSNR (1) SSIM (1) | LPIPS () |Params (M)
PerX2CT [37] 25.575 + 0.010 | 0.614 & 0.001 | 0.282 & 0.003 71.59
X2CT [22] 24.927 +0.001 | 0.616 + 0.008 | 0.334 + 0.001 73.15
RT-SRTS [38] 23.518 +0.020 | 0.523 4 0.002 | 0.348 £0.005 |  546.26
X-Recon [23] 24715+ 0.010 | 0.594 4 0.003 | 0.330 +0.001 |  101.74
SACT-GAN [21] | 25.124 + 0.040 | 0.541 & 0.003 | 0.336 & 0.002 77.32
DCT-Net (ours)|26.600 = 0.003|0.691 + 0.010|0.234 +0.030|  60.70

Evaluation Metric. Peak signal-to-noise ratio (PSNR) and structural simi-
larity index measure (SSIM) are adopted in this work [35]. Moreover, learned
perceptual image patch similarity (LPIPS) is introduced to focus on latent se-
mantic perception [36].

3.2 Comparison with State-of-the-art Methods

Table 1 presents the comparison results on the LIDC-IDRI dataset. DCT-Net
outperforms other methods in PSNR, SSIM, and LPIPS. Compared with the
current SOTA method PerX2CT, DCT-Net achieves improvements of +0.68 in
PSNR, +0.066 in SSIM, and —0.032 in LPIPS. In particular, PerX2CT adopts
slice-wise processing in CT reconstruction [37], ignoring cross-slice continuity
required in 3D structural consistency. To evaluate the stability and generaliza-
tion of DCT-Net and baseline methods, experiments on the CTspinelK pose
more reconstruction challenges due to the lesions in the dataset. As shown in
Table 2, DCT-Net achieves the best performance while maintaining the most
stable metrics with merely -1.328 PSNR and +0.013 LPIPS variation. Further-
more, DCT-Net requires the fewest parameters with only 60.7M, demonstrating
higher computational efficiency.

Visualization results are shown in Fig. 3 where DCT-Net demonstrates su-
perior reconstruction performance, particularly in preserving anatomical details
such as lung structures, cardiac contours, and specific tracheal regions. This
outcome is consistent with the results presented in Tables 1 and 2.
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Fig. 3. Visual comparison of CT slices. The second and the last rows are the global
CT slices, while the first and the third rows are the local details of global CT slices.

3.3 Ablation Study

To verify the effectiveness of dual-branch network, dual-generator reconstruction
GAN (Recon-GAN), and perceptual loss in DCT-Net, the ablation results are
presented in Table 1.

Firstly, the bone suppression CDM failed without the dual-branch network
component. While PSNR and SSIM decrease by 0.702 and 0.083, LPIPS increases
by 0.064 compared with the combination. It indicates that bone-suppressed X-
rays could conduct data cleaning for input data, reducing the interference of bone
artifacts. Meanwhile, the dual-branch network could leverage the complementary
information from the output CTs of the Recon-GAN. Secondly, Recon-GAN
is replaced with the GAN proposed by Ying et al. [22]. Results show that it
declines across all three evaluation metrics, verifying the significance of DCT-
Net improvements to the generator and discriminator. Lastly, perceptual loss
replaced with projection loss is conducted. LPIPS increases by 0.062 in Table 1,
indicating that perceptual loss tends to capture high-level semantic information
while avoiding optimizing only with voxel-level differences.

4 Conclusion

In this study, a network named DCT-Net is proposed to achieve CT reconstruc-
tion from orthogonal X-rays. A conditional diffusion model is firstly employed to
generate bone-suppressed X-rays, overcoming data scarcity and the occlusion of
internal organs by bones. Then, the augmented and original X-rays are fed into a
dual-generator reconstruction GAN, which incorporates a feature fusion module
and self-attention. Next, the perceptual loss is selected as the contrastive loss in
DCT-Net, focusing on restoring information about internal organs. Experimental
results on the LIDC-IDRI and CTspinelK datasets demonstrate that DCT-Net
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significantly outperforms existing benchmark methods. Future work will focus on
data augmentation using self-supervised and semi-supervised methods for cases
lacking samples.
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