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Abstract. Mamba-based architectures have shown promising perfor-
mance in medical image segmentation. Accurate segmentation demands
effective capture and integration of both global context and local details.
However, existing methods often lack a balanced approach to extract-
ing and fusing global and local information within the encoder and de-
coder. To address this issue, we introduce Global-Local Vision-Mamba
with Semantic Fusion Network (GLM-SFNet), which is designed for bal-
anced global-local feature processing in medical image segmentation. In
the encoder, GLM-SFNet employs a Local-Global Vision State Space
block (LGVSS). LGVSS strategically integrates four-directional scanning
Mamba to capture comprehensive global context while incorporating
Learnable Descriptive Convolution (LDC) to ensure detailed local fea-
ture extraction. For the decoder, we propose a Semantic Fusion Decoder
(SFD), which achieves enhanced information integration and boundary
precision by strategically combining global and local semantic fusion
modules. Extensive experiments on three benchmark datasets demon-
strate that GLM-SFNet achieves state-of-the-art segmentation perfor-
mance while maintaining a lightweight architecture.

Keywords: Medical Image Segmentation · Mamba · Attention · Seman-
tic Fusion · Global Context · Local Features

1 Introduction

Segmentation is a fundamental task in medical image analysis [26], providing
essential visual references for clinical diagnosis and improving both efficiency
and accuracy. It has been widely applied in skin lesion analysis [2, 5] and organ
segmentation in abdominal CT scans [12].

U-Net [20] represents a breakthrough in medical image segmentation, with
its encoder-decoder structure and skip connections inspiring numerous improve-
ments [16, 1]. While U-Net and its variants [1] effectively capture local fea-
tures, convolutional kernels inherently struggle to model long-range dependen-
cies. SwinUNet [3] incorporates Swin Transformer [15, 24] to enhance global
⋆ Corresponding author: fred.qi@ieee.org.
† Equal contributions.
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context modeling but at the cost of detail loss and increased computational
overhead. TransUNet [4] and MISSFormer [10] leverage both convolutional and
transformer-based approaches.The high computational complexity of models em-
ploying Transformer [3, 4, 10] limits their the clinical applications.

Recently, Mamba [7] has reduced the computational complexity to linear
time, while preserving global modeling capabilities for long sequences, as com-
pared to the quadratic complexity of the Transformer [24]. Mamba has been ap-
plied to computer vision [8, 31, 14] for its efficiency. Specifically, SliceMamba [6],
VM-UNet [21], VM-UNet v2 [30], and UltraLight VM-UNet [28] have adopted
Mamba architecture to efficiently learn visual representations in medical image
segmentation.

However, focusing mainly on global context modeling, these Mamba-based
segmentation models [6, 21, 30, 28] often have limitations in preserving spatial
local details, hindering for accurate boundary segmentation. Firstly, in the en-
coder, employing Mamba for long-range dependency modeling, these methods
may not adequately represent local spatial relationships and geometric proper-
ties. These local details are crucial for accurately identifying organ boundaries
and lesion regions [29]. Although VMamba [14] applies a cross-scan module to
mitigate this issue, it still fails to maintain spatial consistency between adjacent
pixels. Secondly, concerning the decoder, these methods suffer from poor seman-
tic alignment in feature fusion due to the reconstruction-oriented upsampling.
Poor semantic alignment, caused by independent upsampling of high-level fea-
tures and potential spatial distortion of low-level features, reduces the semantic
integrity of the fused high-resolution outputs. Moreover, existing decoders do
not effectively integrate global context and local details.

To overcome above issues, we introduce a Global-Local Vision-Mamba with
Semantic Fusion Network (GLM-SFNet), which has a Local-Global Vision State
Space Block (LGVSS) for enhanced local-global representation and a Semantic
Fusion Decoder (SFD) for improved semantic integration. LGVSS combines a
four-directional scanning Mamba pathway for long-range dependency modeling
with a Learnable Descriptive Convolution (LDC) [9] branch to capture local de-
tails. SFD, a plug-and-play decoder, employs Global Cross-scale Fusion (GCF)
and Local Cross-scale Fusion (LCF) modules. GCF enhances semantic align-
ment in deep stages through global cross-attention, and LCF aligns high-level
semantic features with low-level spatial features in shallow stages using local
cross-attention. The collaborative combination of GCF and LCF within SFD
ensures semantic coherence and spatial continuity throughout decoding.

The main contributions of this paper are as follows: (1) We propose LGVSS,
which effectively captures long-range dependencies and local details in images.
(2) We propose SFD, a plug-and-play medical image segmentation decoder. It
performs synchronized upsampling and feature fusion to enhance the hierarchical
flow of semantic information from high-level to low-level features. (3) GLM-
SFNet achieves state-of-the-art performance on three public datasets. On the
Synapse dataset, it reaches an average DSC of 84.82% and an HD95 of 11.87mm.
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2 Method

In this section, we introduce the overall architecture of GLM-SFNet and present
details of each component.
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Fig. 1. The overall architecture of GLM-SFNet. (a) A multi-scale encoder with four
hierarchical stages. (b) Semantic Fusion Decoder (SFD). (c) Local-Global Vision State
Space Block (LGVSS). (d) Four-directional scan State Space Model (SSM-4D).

2.1 GLM-SFNet

As shown in Fig. 1, following the mainstream encoder-decoder design, the pro-
posed GLM-SFNet consists of a Mamba-based encoder and a Semantic Fu-
sion Decoder (SFD). According to Fig. 1(a), the encoder takes an input im-
age F ∈ RH×W×C and processes it through a Conv-Embedding layer, adjusting
the channel dimension to produce a feature map F ′ ∈ RH×W×32. This fea-
ture map F ′ is then passed through four consecutive stages. Each stage has a
Down-Sampling layer and an LGVSS block, for multi-scale feature extraction.
As illustrated in Fig. 1(b), the SFD has four stages symmetric to the encoder. In
its two deeper stages, the SFD applies Global Cross-scale Fusion (GCF) to fuse
high-level features with fine semantic alignment. In contrast, Local Cross-scale
Fusion (LCF) integrates high-level semantics with low-level spatial features in
the two shallower layers. In addition, SFD includes a Seg head to generate the
final segmentation masks and three auxiliary SupSeg heads for deep supervision
over intermediate outputs.
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For reproducibility, we detail the implementation of the aforementioned sim-
ple layers. The Conv-Embedding comprises two 3× 3 convolutional layers. Each
Down-Sampling layer contains a max pooling layer followed by two 3 × 3 con-
volutional layers. The SupSeg head comprises a bilinear interpolation layer and
a 1 × 1 convolutional layer, while the Seg head includes a 3 × 3 convolutional
layer, a bilinear interpolation layer, and a 1× 1 convolutional layer. The details
of LGVSS, GCF, and LCF are provided in subsequent subsections.

2.2 Local-Global Vision State Space Block (LGVSS)

The structure of an LGVSS block is depicted in Fig. 1(c). Compared against
the MambaVision Mixer [8], an improved State Space Model (SSM), the LGVSS
block has a distinct main pathway, a left-side branch, and a residual connec-
tion on the right. The main pathway comprises two structural similar parallel
branches. One branch utilizes the four-directional scanning SSM (SSM-4D), as
illustrated in Fig. 1(d), to enhance multi-directional long-range dependency mod-
eling. The other symmetric branch compensates for potential information loss
and local forgetting caused by sequential scanning by omitting SSM-4D. The
outputs of both branches are concatenated and projected through a linear layer.
At the left side, the Learnable Descriptive Convolution (LDC) [9] branch cap-
tures local spatial structures in the 2D feature map by introducing learnable
local descriptors to extract fine-grained texture features. The residual connec-
tion stabilizes gradient propagation. Finally, the outputs from all three branches
are summed to generate the final output of LGVSS.

2.3 Global Cross-scale Fusion (GCF)

GCF integrates high-level semantic information between encoder and decoder
features within deeper stages of the network. It facilitates effective feature fusion
with the Multi-Head Attention (MHA) mechanism [24], as depicted in Fig. 2(a).
The inputs are derived from consecutive stages of the encoder and decoder,
denoted as Fenc ∈ RH×W×C/2 and Fdec ∈ RH/2×W/2×C , respectively.

Initially, Batch Normalization (BN) is applied to normalize features as F ′
enc

and F ′
dec. These normalized features are subsequently fed into MHA, where F ′

enc

serves as queries (Q), while F ′
dec provides keys (K) and values (V ), each after

a global linear embedding. MHA is then applied to obtain fused features, effec-
tively integrating semantic content across scales. Since keys and values span the
entire spatial space of feature maps, MHA operates globally. Finally, the fused
features are further refined through channel attention and spatial attention [27]
to enhance feature representation capability.

2.4 Local Cross-scale Fusion (LCF)

LCF aims to enhance semantic fusion in features of shallow stages while achiev-
ing fine-grained details. To address challenges of locality and sparsity of attention
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Fig. 2. (a) Global Cross-scale Fusion (GCF). (b) Local Cross-scale Fusion (LCF).
(c) Non-overlapping (left) and overlapping (right) window partitioning in Local MHA.

in shallow-stage features [11], Local MHA is adopted. Local MHA can reduce
redundancy and improve fusion efficiency by computing cross-attention only be-
tween corresponding local windows of encoder and decoder features.

As shown in Fig. 2(b), LCF adopts a computational process similar to GCF,
but replaces MHA with Local MHA as its core component. To apply Local
MHA, encoder features F ′

enc are partitioned into non-overlapping windows of
size w × w with a stride of s = w. The window size w is set to 4 when the
spatial sizes ratio between F ′

enc and F ′
dec is two, whereas if the ratio is four, w is

adjusted to 8. These windows are then linearly embedded to produce queries (Q).
In parallel, decoder features F ′

dec are partitioned into overlapping windows of a
fixed size w = 4 with a stride s = w/2, ensuring alignment between encoder and
decoder windows. These decoder windows are then projected through a Linear
layer to generate keys (K) and values (V ). The processes of non-overlapping
and overlapping window partitioning are depicted in Fig. 2(c). This strategic
alignment of window partitioning enables low-level spatial features to effectively
query and integrate high-level semantic information, thereby capturing the fine-
grained details essential for boundary segmentation.

In addition, LCF applies dynamic embedding on normalized decoder features
F ′′
dec to derive F ′

dec through two stacked dynamic convolutions. This process en-
hances local feature representation and represents another difference from GCF.

3 Experiments and Results

3.1 Datasets and implementation

Datasets and Metrics To validate the effectiveness of the proposed network,
we conducted experiments on three publicly available datasets: Synapse [12],
ISIC2017 [2], and ISIC2018 [5]. For Synapse, we followed the configurations of
TransUNet [4] and evaluated performance with the Dice Similarity Coefficient
(DSC) and the 95% Hausdorff Distance (HD95). For ISIC2017 and ISIC2018, we
used the UltraLight VM-UNet [28] protocol, evaluating performance with DSC,
Sensitivity (SE), Specificity (SP), and Accuracy (ACC). HD95 is measured in
millimeters (mm), and other metrics are in percentages (%).
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Table 1. Comparative experimental results on the Synapse dataset. Bold indicates
the best performance, and underline denotes the second-best.

Model Average Aorta GB KL KR Liver PC Spleen SMDSC↑ HD95↓
U-Net [20] 70.11 44.69 84.00 56.70 72.41 62.64 86.98 48.73 81.48 67.96

Att-UNet [17] 71.70 34.47 82.61 61.94 76.07 70.42 87.54 46.70 80.67 67.66
TransUNet [4] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
SwinUNet [3] 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
MT-UNet [25] 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

MissFormers [10] 81.96 18.20 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81
PVT-CASCADE [18] 81.06 20.23 83.01 70.59 82.23 80.37 94.08 64.43 90.10 83.69
TransCASCADE [18] 82.68 17.34 86.63 68.48 87.66 84.56 94.43 65.33 90.79 83.52

VM-UNet [21] 81.08 19.21 86.40 69.41 86.16 82.76 94.17 58.80 89.51 81.40
SliceMamba [6] 81.95 16.04 87.78 68.77 88.30 84.26 95.25 64.49 86.91 79.82

PVT-EMCAD-B2 [19] 83.63 15.68 88.14 68.87 88.08 84.10 95.26 68.51 92.17 83.92

GLM-SFNet 84.82 11.87 88.32 74.78 87.49 84.35 95.14 71.24 91.98 85.31

Implementation Details GLM-SFNet was implemented using Python 3.11,
PyTorch 2.3.1, and CUDA 12.1. All experiments were conducted on an NVIDIA
RTX 4090 GPU. During training, we applied random rotation and flipping for
data augmentation and used the AdamW optimizer. For Synapse, we set the
input resolution to 224× 224, the batch size to 24, and the maximum number of
training epochs to 600. The initial learning rate was 0.001, and the loss function
was a weighted combination of Dice loss and cross-entropy loss, with both weights
set to 1. For ISIC2017 and ISIC2018, the input resolution was set to 256× 256,
the batch size to 8, and the maximum number of training epochs to 250. The
initial learning rate was 0.01, and the loss function was a weighted combination
of BCE loss and Dice loss, with weights of 1 for both.

3.2 Quantitative and qualitative segmentation results

As shown in Table 1, our GLM-SFNet achieved superior performance on the
Synapse dataset, with an average DSC of 84.82% and HD95 of 11.87 mm, outper-
forming all baseline models. Compared with PVT-EMCAD-B2 [19], it achieved
a 1.19% DSC improvement and a 3.81 mm HD95 reduction. Compared with
VM-UNet [21], it achieved a 3.74% DSC improvement and a 7.34 mm HD95
reduction. For small organs, GLM-SFNet achieved a 4.19% DSC improvement
for the gallbladder (GB) and a 2.73% DSC improvement for the pancreas (PC).
For organs with complex boundaries, it achieved a 1.39% DSC improvement
for the stomach (SM). As shown in Table 2, GLM-SFNet also performed well
on the ISIC2017 and ISIC2018 datasets, achieving DSC of 92.18% and 90.64%,
which are 1.27% and 1.24% higher than UltraLight VM-UNet [28]. These results
confirm that GLM-SFNet can effectively model long-range dependencies while
capturing fine-grained local textures, enabling precise segmentation of organ
boundaries and lesion areas.

As shown in Fig. 3, we present visual comparisons between GLM-SFNet and
other methods on the Synapse dataset. Our method achieves precise bound-



GLM-SFNet: Global-Local Vision-Mamba with Semantic Fusion for MIS 7

Table 2. Comparative experimental results on the ISIC2017 and ISIC2018 datasets.
Bold indicates the best, and underline denotes the second-best.

Methods ISIC2017 ISIC2018
DSC ↑ SE ↑ SP ↑ ACC ↑ DSC ↑ SE ↑ SP ↑ ACC ↑

U-Net [20] 89.89 87.93 98.12 96.13 88.51 87.35 97.44 95.39
VM-UNet [21] 90.70 88.37 98.42 96.45 88.91 88.09 97.43 95.54

VM-UNet v2 [30] 90.45 87.68 98.49 96.37 89.02 89.59 97.02 95.51
MALUNet [22] 88.96 88.24 97.62 95.83 89.31 88.90 97.25 95.48

LightM-UNet [13] 90.80 88.39 98.46 96.49 88.98 88.29 97.65 95.55
EGE-UNet [23] 90.73 89.31 98.16 96.42 88.19 90.09 96.38 95.10

UltraLight VM-UNet [28] 90.91 90.53 97.90 96.46 89.40 86.80 97.81 95.58

GLM-SFNet 92.18 90.87 98.53 97.08 90.64 90.59 97.50 96.04

56

Aorta GB KL KR liver PC Spleen SM

Image GT GLM-SFNetTransUNet VM-UNetU-Net SwinUNet

Fig. 3. Qualitative results of different methods.

ary delineation for complex-shaped organs, as demonstrated in stomach (SM)
segmentation (first row) and liver segmentation (second row). For small organs
like pancreas (PC) and kidney right (KR) (third row), GLM-SFNet shows su-
perior performance while effectively addressing over-segmentation and under-
segmentation issues. This stems from our encoder’s effective modeling of long-
range dependencies and accurate capture of local textural details, which provide
comprehensive multi-scale features. The decoder further improves performance
through cross-scale semantic fusion of hierarchical encoder features, achieving
refined boundary accuracy.

3.3 Ablation Study

Table 3 presents the ablation experiments conducted on the Synapse dataset to
validate the effectiveness of SFD. We replaced the decoders of PVTv2-EMCAD-
B0, PVTv2-EMCAD-B2 [19], and SwinUNet [3] with SFD and compared their
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Table 3. Effectiveness of SFD (ours) on the Synapse dataset.

Encoders PVTv2-B0 PVTv2-B2 SwinUNet Encoder
Decoders EMCAD SFD EMCAD SFD SwinUNet Decoder SFD

DSC 81.97 83.14 83.63 84.42 79.13 82.60
HD95 17.39 17.10 15.68 13.58 21.55 14.52

Table 4. Effect of different components
in LGVSS.

LGVSS DSC Params(M) GFLOPsLDC #SD

No 1 83.18 7.74 4.16
No 2 83.53 7.74 4.17
No 4 84.05 7.74 4.18
Yes 4 84.82 14.35 4.64

Table 5. Impact of the global and local
component combination in SFD.

SFD stages DSC Params(M) GFLOPs

L L L L 75.77 17.64 4.64
L L L G 77.67 15.04 4.62
L L G G 84.82 14.35 4.64
L G G G 83.27 14.16 4.90
G G G G 80.35 14.10 14.81

performances. The results demonstrated that SFD improved DSC of the three
models by 1.2%, 0.79%, and 3.47%, and reduced the HD95 by 0.29 mm, 2.1 mm,
and 7.03 mm, respectively. These results confirmed the advantages of SFD in
cross-scale semantic fusion and delineate complex boundary shapes.

Table 4 evaluates the impact of the LDC branch and the number of Scanning
Directions (#SD) in LGVSS. Firstly, without LDC, unidirectional, bidirectional,
and four directional (4D) scanning were applied to analyze the effect of the
number of SDs. The results showed that increasing the number of SDs effectively
enhanced the performance of LGVSS, while the number of parameters remained
unchanged due to shared scanning components, and GFLOPs slightly increased.
Adopting LDC with the 4D scanning scheme, DSC was further improved by
0.77%, with moderate increase in parameters and minor rise in GFLOPs.

Table 5 further analyzes the different combinations of LCF (L) and GCF
(G) in SFD to determine the optimal decoding configuration. The table lists
the four stages of the decoder from shallow to deep layers from left to right.
The experimental results revealed that deep-layer features contain rich semantic
information, while shallow-layer features exhibit abundant local details, both
are crucial for segmentation. Ultimately, we found that the LLGG configuration
achieved the best balance between performance and computational efficiency.

4 Conclusions

In this study, we introduced the Global-Local Vision-Mamba with Semantic
Fusion Network (GLM-SFNet), designed to achieve a balanced integration of
global contexts and local details in medical image segmentation. Our innova-
tion lies in both encoder and decoder. In encoder, the Local-Global Vision State
Space (LGVSS) block enables comprehensive global context capture and detailed
local feature extraction. The Semantic Fusion Decoder (SFD) enhances informa-
tion integration and boundary precision. Extensive experiments on three public
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datasets demonstrate that this balanced design improves segmentation perfor-
mance over existing state-of-the-art methods. Our work demonstrates that a
balanced encoder-decoder architecture is critical in achieving better segmenta-
tion results.
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