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Abstract. Multimodal pathology-genomic analysis is critical for can-
cer survival prediction. However, existing approaches predominantly in-
tegrate formalin-fixed paraffin-embedded (FFPE) slides with genomic
data, while neglecting the availability of other preservation slides, such
as Fresh Froze (FF) slides. Moreover, as the high-resolution spatial na-
ture of pathology data tends to dominate the cross-modality fusion pro-
cess, it hinders effective multimodal fusion and leads to modality imbal-
ance challenges between pathology and genomics. These methods also
typically require complete data modalities, limiting their clinical appli-
cability with incomplete modalities, such as missing either pathology
or genomic data. In this paper, we propose a multimodal survival pre-
diction framework that leverages hypergraph learning to effectively in-
tegrate multi-WSI information and cross-modality interactions between
pathology slides and genomics data while addressing modality imbal-
ance. In addition, we introduce a memory mechanism that stores previ-
ously learned paired pathology-genomic features and dynamically com-
pensates for incomplete modalities. Experiments on five TCGA datasets
demonstrate that our model outperforms advanced methods by over
2.3% in C-Index. Under incomplete modality scenarios, our approach
surpasses pathology-only (3.3%) and gene-only models (7.9%). Code:
https://github.com/MCPathology/M2Surv
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1 Introduction

Multimodal survival prediction, integrating Whole Slide Images (WSIs) with ge-
nomic profiles, offers great potential for advancing precision oncology [I8I31].
This integration leverages the complementary strengths: WSIs capture cellular
morphology and tumor micro-environment [29J23], while genomic profiles iden-
tify key driver mutations and define molecular subtypes [T9120].
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Generally, two prevalent methods are used for WSI preparation: Formalin-
Fixed Paraffin-Embedded (FFPE) and Fresh Frozen (FF). Specifically, FFPE
slides are widely used due to their high-quality morphological preservation, while
FF slides offer better nucleic acids and proteins but are more prone to artifacts
and structural degradation. For patients with multiple slides, previous stud-
ies [328IB0/12] typically aggregated features from all patches across different
slides, overlooking the heterogeneity in staining style within WSIs [7].

On the other hand, these models employ mid- or late-feature fusion strategies
for multimodal integration of pathology and genomics, achieving better perfor-
mance compared to unimodal approaches [325/12]. However, they face challenges
related to modality imbalance, as WSIs contain thousands of patches while
only a few hundred genes are identified for common cancers [2I]. This imbalance
leads to the pathology modality dominating the fusion process, particularly when
using cross-attention mechanisms [3J12]. Incorporating slides of both FFPE and
FF types would further exacerbate this issue. Furthermore, in practice, technical
and financial constraints often result in insufficient tissue samples and sequenc-
ing errors [6], leading to incomplete modalities, such as missing genomic data
or pathology WSIs. However, the effectiveness of multimodal fusion strategy
(e.g., cross-attention) depends heavily on complete correlations between modal-
ities, which limits their clinical applicability and poses deployment challenges in
real-world settings.

In this paper, we propose M2Surv, a Memory-augmented Incomplete Multi-
modal Survival Prediction Framework, consisting of three stages: feature ex-
traction, multi-slide hypergraph, and gene-attentive hypergraph. Specifically, the
multi-slide hypergraph represents multiple pathology slides by treating patches
as nodes, and first constructs intra-WSI hyperedges within individual slides
based on spatial interactions, then progressively aggregates information across
multiple slides through inter-WSI hyperedges, capturing morphological varia-
tions and histological patterns at different levels. To mitigate the pathology-
genomics imbalance, the gene-attentive hypergraph establishes dense cross-modal
connections by explicitly linking each gene group to all pathology features. By
doing this, the importance of genomic features is reinforced, ensuring a more
balanced contribution to the fusion process. Additionally, a memory bank is in-
troduced to store paired pathology-genomic features during training, allowing
the retrieval of relevant features to compensate for incomplete modalities during
inference, ensuring reliable predictions even with incomplete data.

Our contributions are summarized as: A multimodal framework, M2Surv, is
proposed to integrate multiple pathology slides and genomic data while address-
ing the pathology-genomics imbalance through hypergraph learning. A memory
bank is implemented with few computational consumption yet effectively com-
pensates for missing modality. Extensive experiments demonstrate the superior-
ity of our model, achieving advanced performance across five TCGA datasets.
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Fig.1. Overview of M2Surv. It includes feature extraction to process multiple
pathology slides and genomics, multi-slide hypergraph to capture both intra-slide and
inter-slide feature representations, and gene-attentive hypergraph to establish dense
connections between each gene group and all pathology patches. A memory bank is
incorporated to store paired pathology-genomic features during training and retrieve
similar features during inference, mitigating missing modality challenges.

2 Method

2.1 Overview

Preliminary. Given a cohort X = {X;,...,X,} of n subjects, each subject
X; = {H,, y;} consists of pathology—genomics features H; = {P;, G;} and survival
information y; = {¢;,t;}. Here, P; = {P1,...,Pix} includes K FF and FFPE
slides, G; represents the genomic profiles, ¢; € {0,1} denotes the event status
(¢; = 0 indicates event occurrence), and t; is the overall survival time. The
goal is to estimate the hazard function ¢y (t), which predicts the instantaneous
incidence event rate at time ¢, while training a model F to predict the probability
of survival beyond ¢ using the survival function ¢,(t). The model is optimized
using the negative log-likelihood losses [26], defined as:

Es = Z?:l(l — Ci) log ¢h(t1|Hl) +c; log ¢s(tz|H1) =+ (1 — Ci) log (Z)s(tz — 1|H1) (1)

Our Framework. M2Surv comprises feature extraction, multi-slide hyper-
graph, and gene-attentive hypergraph (see Fig. . Paired pathology P and ge-
nomics G features are extracted using respective encoders. The multi-slide hyper-
graph first builds intra-WSI graphs for each slide based on spatial interactions,
followed by an inter-WSI hypergraph to capture structural relationships across
multiple slides. The gene-attentive hypergraph constructs dense connections us-
ing gene features to guide and refine Py, generating integrated features Py and
Gy for final risk prediction. To handle incomplete modalities, a memory bank
M is introduced to store paired pathology-genomic features M, and M, during
training, allowing the model to retrieve and approximate the similar features
from M to compensate for missing information during inference.

Feature Extraction. Following previous studies [I6/12I28|, each WSI Py,
is partitioned and randomly selected into N, = 4096 patches of 256 x 256
pixel, at 20x magnification. A pretrained encoder (e.g., ResNet50) extracts d-
dimensional features from these patches, representing the WSI as P;, € RVexd =
{p1,--.,pn,}, where each patch pj has spatial coordinates ¢, = (x,yr). The
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multi-pathology feature set P = {Py,...,Pg} includes multiple slide features
from the same patient. For genomic data like RNA-seq, CNV, and SNV, we
adopt the feature selection method [3] by grouping them into W = 6 func-
tional groups: Tumor Suppression, Oncogenesis, Kinases, Cellular Differentia-
tion, Transcription, and Cytokines. Each category is encoded using a genomic
encoder (i.e., a multilayer perceptron, MLP) to produce genomic features G €
RV = {g1,...,gw}.

2.2 Multi-slide Hypergraph

Considering the distinct staining styles and biopsy tissue variations in multi-
ple slides, we adopt a two-stage strategy: intra-slide to handle style differences
within individual slides, followed by inter-slide integration to ensure the aggre-
gation of multi-slide information. Specifically, we leverage widely used hyper-
graphs [A5I3127] to construct intra-slide topological hyperedges for each
WSI while establishing inter-slide structural hyperedges across different
slides.

For a WSI Py, each patch p is treated as a vertex, and intra-slide hyper-
edges are formed by grouping each patch with its neighboring patches based on
Euclidean distance. Given a patch pg, its neighbors are determined as:

Nr(pr) = {pj | Gy — Cpell2 < 0}, (2)

where (. and (,, denote the coordinates of patches p; and pj respectively,

and ¢ is a distance threshold. This yields topological-based hyperedges: Eék) =
{{px,pj1,Pj2,---} | Yp; € Nr(pk)}. The combined intra-slide hyperedges across
K WHSIs are then represented as Ep = {5}1), e ,5}K)}. By capturing the topo-
logical relationships between patches, this approach effectively encodes spatial
structures within each WSI, thereby preserving the inherent tissue morphology.

For multi-pathology P, all patches are treated as nodes, and inter-slide struc-
tural hyperedges using feature similarity. The neighbors of p, are identified as:

Nr(pr) = {p; | sim(pk, p;) > a}, (3)

where sim(-,-) represents the cosine similarity function, and « is a similarity
threshold. This builds structural hyperedges: £r = {{pr,D0j,:Pjs,---} | Y D; €
Nr(pr)}. By capturing the structural relationships between patches across mul-
tiple WSIs, it identifies shared morphological patterns and preserves consistent
biological information across WSIs. Notably, 4 and « are determined by the hy-
peredge construction threshold A, which selects A — 1 neighbors for each patch.

The final hyperedge set &,, is formed by merging these intra-slide and inter-
slide hyperedges, where &,, = & U Ep represents their union. The constructed
multi-slide hypergraph is then processed through hypergraph convolutions [§] to
extract high-order feature representations P, = PL) after L layers.
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2.3 Gene-attentive Hypergraph

Considering the dimensional imbalance between genomic and pathology features,
we aim to construct a dense gene-attentive hypergraph by establishing connec-
tions between each gene group and the multi-slide hypergraph. It is motivated
by the ability of hypergraphs to link features from different modalities into in-
terconnected clusters, effectively capturing complex cross-modal relationships
within a unified structure. Specifically, all nodes in the multi-slide hypergraph
and the six gene groups are treated as new nodes, with hyperedges &, centered
around each gene group. The neighbors are identified as:

No(gu) = {p; | —P@Gw2)) o gy 4
G (9w) = {p; | SV explatt(g. pr)) > B} (4)

where att represents the cross-attention score between gene group g,, and patch
pj, and 3 is the threshold (empirically set to select the top 5% of patch-gene
hyperedges balancing connections and computation). This results gene-attentive
hyperedges: E¢ = {{gw:Pj,> Pjos---} | V pj € Ng(gw)}. Then, the hypergraph
convolution is employed to update the representations of all nodes and produce
the refined pathology and genomic features Py and Gy.

The gene-attentive hypergraph leverages cross-attention mechanisms to de-
fine hyperedges, emphasizing cross-modal relationships and interactions. By es-
tablishing dense connections centered on gene groups, our approach enables each
gene group to effectively interact with multiple pathology patches, mitigating the
imbalance issue observed in previous cross-attention strategies [3I12].

2.4 Memory Bank

To address incomplete modalities in clinical scenarios, we introduce a memory
bank M [I] to store paired pathology-genomic features {(P,G)}" ; during train-
ing, where n is the number of training samples. We employ a momentum update
strategy [10] to dynamically update stored features. At the training r- epoch,
M is updated: M) < g (PTG + (1 —6) - MY, where 0 € [0,1] is the
momentum coefficient.

During inference, if a modality (i.e., all pathology slides or genomic data) is
missing, the available modality M, is used to retrieve the most relevant features
by computing its feature similarity with all entries in M. The top-p most similar
entries {Mgﬂ,) };Lzl are selected and then aggregated, expressed as:

o . ()
N — Z ?XP(SIm(.MmMa )()l) M), (5)
o1 2oy exp(sim(Mg, Mg )

where M, is the approximated features used to represent the missing features.

Our memory bank leverages momentum update retrieval for collective anal-
ysis of historical training data. Essentially, it integrates multimodal informa-
tion from previously learned multiple samples, effectively addressing incomplete
modalities while maintaining efficiency.
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Table 1. Comparison of our model with advanced methods on five datasets.
C-Indexes (Mean + STD) are reported based on 5-fold cross-validation.

Model | BLCA BRCA  CO-READ  HNSC STAD  |Mean
> ABMIL [I1] 0.624 £ 0.059 0.672 £ 0.051 0.730 £ 0.151 0.624 £ 0.042 0.636 £ 0.043 | 0.657
& AMISL [26] 0.627 +0.032  0.681 +0.036 0.710 + 0.091 0.607 + 0.048 0.553 £ 0.012 | 0.636

E TranMIL [22] 0.617 + 0.045 0.663 + 0.053 0.747 + 0.151 0.619 + 0.062 0.660 + 0.072 | 0.661
¥ CLAM-MB [16]| 0.623 + 0.045 0.696 + 0.098 0.721 £ 0.159 0.648 + 0.050 0.620 + 0.034 | 0.662
A& M2Surv (Ours)|0.646 + 0.022 0.735 + 0.056 0.749 + 0.045 0.612 + 0.004 0.677 + 0.048/0.684
.2 MLP [9] 0.530 £ 0.070 0.622 + 0.079 0.712 + 0.114 0.520 + 0.064 0.497 + 0.031 | 0.576
g SNN [I5] 0.521 £ 0.070 0.621 £ 0.073 0.711 £ 0.162 0.514 £ 0.076 0.485 =+ 0.047 | 0.570
g SNNTrans [I5] | 0.583 + 0.060 0.679 =+ 0.053 0.739 + 0.124 0.570 + 0.035 0.547 + 0.041 | 0.622
U M2Surv (Ours)|0.593 + 0.065 0.696 + 0.043 0.701 + 0.087 0.659 + 0.058 0.704 + 0.082|0.671

SNN+CLAM | 0.625 £ 0.060 0.699 £ 0.064 0.716 + 0.016 0.638 £ 0.066 0.629 + 0.065 | 0.661

= Porpoise [2] 0.617 £ 0.056 0.668 £ 0.070 0.738 £ 0.151 0.614 £ 0.058 0.660 =+ 0.106 | 0.659
< MCAT [3] 0.640 + 0.076  0.685 +0.109 0.724 + 0.137 0.564 + 0.084 0.625 + 0.118 | 0.648
g MOTCat [25] 0.659 + 0.069 0.727 £ 0.027 0.742 £ 0.124 0.656 + 0.041 0.621 £ 0.065 | 0.681
= CMTA [30] 0.670 £ 0.030 0.691 & 0.037 0.704 + 0.117 0.562 + 0.086 0.592 =+ 0.014 | 0.644
Z SurvPath [I2] | 0.635 + 0.026 0.679 £ 0.077 0.731 £ 0.124 0.617 £ 0.058 0.620 =+ 0.044 | 0.656
= PIBD [28] 0.651 +0.092 0.712 + 0.048 0.786 + 0.134 0.607 + 0.059 0.668 =+ 0.055 | 0.685

M?2Surv (Ours)|0.671 + 0.039 0.744 + 0.091 0.757 + 0.080 0.661 + 0.012 0.673 + 0.028|0.701

3 Experiments

Datasets and Experimental Settings. Following previous studies [12128], we
evaluated our models on five The Cancer Genome Atlas (TCGA) datasets: Blad-
der Urothelial Carcinoma (BLCA) (n=384), Breast Invasive Carcinoma (BRCA)
(n=968), Colon and Rectum Adenocarcinoma (CO-READ) (n=298), Head and
Neck Squamous Cell Carcinoma (HNSC) (n=392), and Stomach Adenocarci-
noma (STAD) (n=317). We followed the previous dataset settings [SIT2I28], and
employed the Adam optimizer with a learning rate of 1 x 1074 and a weight
decay of 1 x 107°, training 30 epochs. Concordance Index (C-Index) was used
as the metric. For each dataset, We performed 5-fold cross-validation with a 4:1
train-val split, reporting results as the mean + standard deviation (STD).

3.1 Comparisons with Advanced Methods

We compared our models in three settings: pathology-only (ABMIL, AMISL,
TransMIL, and CLAM), genomic-only (MLP, SNN, and SNNTrans), and mul-
timodal (Porpoise, MCAT, MOTCat, CMTA, SurvPath, and PIBD). Results
for unimodal methods, SNN+CLAM, and Porpoise were quoted from previous
study [28], while others were reproduced using their released code (see Table .

Our model achieved a mean C-index of 0.701, outperforming all unimodal
and multimodal methods on nearly all datasets. In modality-missing scenarios, it
exhibited superior performance with a mean C-Index of 0.684 (pathology-only),
surpassing TransMIL (0.661) and CLAM-MB (0.662). Similarly, it maintained a
score of 0.671, outperforming gene-only models such as SNNTrans (0.622). These
results demonstrate the effectiveness of our framework in integrating pathology
and genomic data while handling incomplete modalities.
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Table 2. Ablation study on multi-slide hypergraph and gene-attentive hy-
pergraph. We evaluated pathology aggregator (Agg), slide type (HGNN™ for FFPE
only), hyperedge types, and construction threshold A for multi-slide hypergraph, and
multimodal feature fusion (Fuse) and cross-modal edge construction methods (HGNN*
for random edge instead of attention score) for gene-attentive hypergraph.

Agg  Slides A Fuse | BLCA BRCA CO-READ HNSC STAD  |Mean

MLP  Multi 9 HGNN | 0.644 + 0.064 0.708 +0.039 0.750 + 0.046 0.620 + 0.043 0.638 + 0.056 | 0.672
ABMIL Multi 9 HGNN | 0.645 +0.034 0.715 £ 0.101  0.699 + 0.049 0.632 + 0.037 0.661 + 0.031 | 0.670
TransMIL Multi 9 HGNN | 0.634 + 0.045 0.718 £ 0.083 0.743 £ 0.109 0.623 + 0.038 0.661 + 0.056 | 0.676
9
9

GAT  Multi HGNN | 0.648 +0.039 0.733 £ 0.116 0.730 £ 0.136 0.637 £ 0.040 0.656 + 0.094 | 0.681
GCN  Multi HGNN | 0.644 +0.038 0.701 + 0.053 0.755 + 0.086 0.621 + 0.020 0.667 + 0.044 | 0.678

HGNN™ intra. 9 HGNN | 0.668 + 0.045 0.733 £ 0.062 0.767 + 0.095 0.639 + 0.056 0.671 + 0.067 | 0.696
HGNN intra. 9 HGNN | 0.645 + 0.041 0.684 £+ 0.065 0.706 + 0.122 0.631 £ 0.021 0.661 + 0.066 | 0.665
HGNN inter. 9 HGNN | 0.632 £ 0.024 0.680 £ 0.103 0.742 £ 0.062 0.627 £ 0.039 0.639 + 0.079 | 0.664
HGNN Multi 5 HGNN | 0.649 + 0.032 0.695 £ 0.048 0.689 £ 0.067 0.641 + 0.082 0.706 + 0.088| 0.676
HGNN  Multi 25 HGNN | 0.640 + 0.028 0.734 £ 0.061 0.709 £+ 0.080 0.620 £ 0.040 0.660 + 0.067 | 0.673

HGNN  Multi 9 Concat | 0.628 £+ 0.049 0.720 £ 0.035 0.708 £ 0.026 0.590 £ 0.065 0.673 £ 0.048 | 0.664
HGNN  Multi 9 Co-Attn| 0.669 + 0.030 0.677 +0.035 0.713 + 0.087 0.632 £ 0.033 0.655 + 0.048 | 0.669
HGNN Multi 9 GAT | 0.623 £ 0.039 0.731 £ 0.089 0.717 £ 0.126 0.642 £ 0.070 0.651 £ 0.059 | 0.673
HGNN Multi 9 GCN | 0.646 £ 0.037 0.732 £ 0.095 0.692 £ 0.097 0.607 £ 0.059 0.703 £ 0.091 | 0.676
9
9

Multi-slide hypergraph

Gene-attn

HGNN  Multi 9 HGNN*| 0.601 + 0.011  0.702 + 0.066 0.686 + 0.104 0.629 + 0.063 0.654 + 0.030 | 0.654
HGNN Multi 9 HGNN ‘0.671 + 0.039 0.744 + 0.091 0.757 + 0.080 0.661 + 0.012 0.673 + 0.028 |0.701

3.2 Ablation Studies

Multi-slide hypergraph. We evaluated various pathology aggregators (Agg),
slide types, hyperedge types, and hyperedge construction thresholds A\ (see Ta-
ble [2). When using Agg such as MLP (0.672), ABMIL [11] (0.670), and Trans-
MIL [22] (0.676), incorporating GAT [24], GCN [I4] and HGNN improved the
average C-Index to 0.681, 0.698 and 0.701 respectively. highlighting the effective-
ness of graph-based models in enhancing feature aggregation. Using only FFPE
(HGNN™) yielded a score of 0.696, which increased to 0.701 with multi-slide
integration, demonstrating the benefit of incorporating multiple slides.

When exploring different slide types, using only intra-slide topological hyper-
edges or inter-slide structural hyperedges achieved a mean C-Indexes of 0.665
and 0.664 respectively, indicating that both connections contribute to model
performance. Moreover, varying HGNN construction thresholds (5, 9, and 25)
produced scores of 0.676, 0.701, and 0.673, respectively. This suggests that an
optimal threshold balances information retention, preventing homogenization at
(A = 25) and avoiding oversimplification at (A = 5).

Gene-attentive hypergraph. We evaluated multimodal fusion and hyper-
edge construction methods (see Table . Compared to direct concatenation
(0.664) and cross-attention (0.669), gene-attentive GAT and GCN improved the
C-Index to 0.673 and 0.676, respectively. HGNN with attention-based edge con-
struction achieved a score of 0.701 better than random edge construction (0.654),
confirming the effectiveness of hypergraph integration with attention mecha-
nisms in capturing cross-modal interactions and mitigating modality imbalance.

Memory bank. We evaluated the time consumption, top-u, and generaliz-
ability of our memory bank across five datasets (see Fig. . Specifically, using
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Fig. 2. a), Extra time consumption for memory bank during training and inference. b),
Performance with varying retrieval top-u. ¢), Performance with incomplete modality
using the memory bank across models (M2Surv, MCat,and MOTCat).
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Fig.3. Visualization for BRCA cases: The heatmap generated from cross-
attention scores, and the top five most influential genes are highlighted by gradient
integral. Kaplan-Meier curves (Bottom) shows significant survival stratification
(p<0.05 across all datasets) between high /low-risk groups (median split).

the memory bank across various datasets resulted in an approximately 4.5% in-
crease in overall time consumption and a 2.5% in inference time. When selecting
the top u relevant features, the best average performance was achieved at =1,
indicating that utilizing only the most relevant stored feature is effective in mit-
igating missing modalities. Incorporating the memory bank into MCat [3] and
MOTCat [25] enabled these models to perform effectively even with incomplete
modalities while maintaining performance comparable to full settings, showing
the adaptability of the memory bank in enhancing multimodal methods.

3.3 Visualization

The attention score visualizations highlight specific regions targeted by differ-
ent gene groups, quantitatively assessing the gene-attentive hypergraph in cap-
turing cross-modal interactions (see Fig. [3). For example, it reveals individual
gene influences, with NROB1 exhibiting a high positive gradient, indicating an
enhancing role in certain pathological conditions. To validate the discrimina-
tive capacity of our model, we performed Kaplan-Meier analysis and log-rank
test [I7] by stratifying patients into high- and low-risk groups based on the pre-
dicted median risk scores. The p-values below 0.05 confirmed the effectiveness
of the model across all datasets.
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4 Conclusion

We proposed M2Surv, a multimodal survival prediction framework that leverages
hypergraphs to model multi-slide and genomic data. We introduced a memory
bank to handle missing clinical modalities. Extensive experiments demonstrated
the superior performance of our framework.

Limitations. While incorporating more slides enhances consistency mod-
eling, artifacts in FF slides may introduce noise into pathology features. Hy-
pergraphs effectively capture multi-scale interaction but are less flexible than
cross-attention mechanisms in dynamically adjusting modality-specific contribu-
tion weights for fine-grained feature alignment. Moreover, the retrieval efficacy
of memory banks depends on the coverage of training data, which may struggle
to capture rare pathology-genomics associations in historical records.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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