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Abstract. Longitudinal medical image studies often involves multiple
scans of the same patient taken at different times, potentially with dif-
ferent modalities such as (2D vs. 3D volumetric medical imaging). In
this work, we propose a single diffusion-based framework that can pre-
dict future embeddings of imaging data for predefined time points. Our
approach uses a universal vision encoder, able to ingest either 2D or 3D
scans, combined with a temporal transformer to fuse embeddings across
multiple timepoints. A conditional latent diffusion model then produces
the future output in latent space encoding the longitudinal information
of the patient. We challenged our method in two crucial tasks involv-
ing radiological imaging: (1) predicting future pathology in the form of
segmentation masks, exemplified by Interstitial Lung Disease (ILD) pro-
gression on 3D chest CT scans of Systemic Sclerosis (SSc) patients, and
(2) generating radiology reports that incorporate prior imaging context,
exemplified by longitudinal chest X-rays from MIMIC-CXR. Results in-
dicate that this unified diffusion approach outperforms existing baselines
in both pixel-level forecasting and report generation, highlighting its ver-
satility and effectiveness for longitudinal medical imaging.
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1 Introduction

Longitudinal medical image studies involve comparing multiple imaging data of
the same patient captured at different time points that are not necessarily regu-
larly spaced. Such studies are essential for assessing disease progression and thus
making informed treatment decisions. Despite their importance, especially for
managing chronic diseases, the development of longitudinal computational tools
aiming to assist the clinical routine is challenged by the severe data scarcity,
high variability and large dimensionality of medical images. In this study, we
propose a novel deep learning method based on a conditional latent diffusion
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model (CLDM) that generates future latent representations at predefined time
points using multiple irregularly spaced past latent representations. These gen-
erated representations, when combined with task-specific decoders, can be used
for a variety of applications, including (1) forecasting future disease state and
(2) generating radiology reports that integrate prior and current findings. We
evaluated the performance of the proposed method on a public and a real-world
in-house clinical dataset, demonstrating its ability to outperform existing base-
line models. Our findings suggest that the proposed pipeline holds promise as
a valuable tool for clinicians in identifying possible future states and, ideally,
improving their treatment options.

The contribution of this work is threefold; (i) we propose a unified conditional
latent diffusion model that leverages a single architecture for processing 2D and
3D radiological data, (ii) in contrast to the current literature, our method is ag-
nostic to the number of scans available per patient, and their temporal distribu-
tion which proves to be useful for clinical practice when the number of follow-ups
varies for each patient, (iii) we introduce a temporal transformer based on the
self-attention mechanism to model the temporal dynamics allowing the diffusion
model to weigh the importance of different parts of the input sequence differ-
ently. Through experiments in two different datasets, we show that the proposed
diffusion framework can tackle diverse tasks and data dimensionalities found in
longitudinal imaging scenarios.

2 Related Work

Universal 2D/3D Vision Encoders. Universal pretrained encoders that can
handle both 2D and 3D data with minimal architectural changes [17,4] have been
introduced recently. Such unified models have demonstrated strong performance
in a range of tasks, from planar chest X-ray classification to volumetric CT
segmentation, by benefiting from a more generalizable representation space. Our
pipeline leverages this idea of a universal encoder, allowing the same backbone
to ingest 2D or 3D radiological data.
Diffusion Models in Medical Imaging. Diffusion models have recently shown
promising results in various medical imaging tasks, including image synthesis,
reconstruction, and implicit ensemble segmentation [7,11,16,2]. In practice, they
learn a forward process that gradually corrupts data with noise and a reverse
process that denoises the data in iterative steps, generating high-quality samples
or reconstructions [12]. This framework has proven useful for handling complex,
high-dimensional medical images, as it can capture subtle anatomical variations
in a principled, probabilistic manner. Nevertheless, directly integrating temporal
information into diffusion approaches remains underexplored, motivating our
conditional latent diffusion design for multi-time scenarios.
Multi-Time Fusion in Longitudinal Analysis. While many deep learning
models for medical imaging focus on single scans, longitudinal datasets offer
richer context by capturing how a patient’s condition evolves [8,10]. Conven-
tional approaches sometimes concatenate features across time or adopt recur-
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rent neural networks to exploit temporal cues. More recent methods employ
transformer architectures to handle irregular intervals or missing scans, provid-
ing improved robustness in progression analysis. However, these works typically
focus on either segmentation or classification, tasks, rarely extending to gener-
ative forecasting. Our approach differs by proposing a generative forecasting of
the future embedding space, able to adapt to a variety of problems.
Automated Radiology Report Generation. Automating radiology report-
ing has long been pursued to reduce radiologist workload and ensure consistent
quality of reports [14,13]. Early systems employed recurrent architectures [5].
More recently, transformer-based methods, such as R2Gen [1], enhanced coher-
ence and factual correctness by leveraging attention over image features. More
advanced frameworks incorporate prior reports or memory modules to highlight
changes [20,3]. Recent diffusion-based text generators (e.g., [15]) refine textual
embeddings in parallel, reducing errors that can accumulate in autoregressive
decoders. By integrating a temporal transformer and a diffusion text decoder,
we address the challenge of describing multi-exam findings more accurately than
single-exam or purely autoregressive approaches.

Overall, while prior works have separately explored diffusion-based genera-
tion, multi-time fusion, and universal encoders for either 2D or 3D tasks, our
framework merges these into a single, novel, efficient and modular pipeline.

3 Methods
Our approach is built around three key components: a universal vision encoder
capable of ingesting either 2D or 3D scans, a temporal transformer that fuses
multiple prior exams into a single representation, and a conditional latent diffu-
sion module that produces the future latent embedding. Depending on the final
decoder, the system outputs either a segmentation mask or a textual report. An
overview of the entire method is presented in Fig. 1.
Universal Vision Encoder for 2D/3D Data. We use UniMiSS [18], a pre-
trained transformer based vision backbone, which processes medical images in
either 2D or 3D form. We use this powerful model to extract embeddings zdi

∈ Rd

for the image acquired on date di. This design enhances modularity since both
2D and 3D modalities are handled by a unified architecture, eliminating the need
for separate specialized encoders.
Temporal Transformer for Longitudinal Fusion. After obtaining embed-
dings {zd0

, zd1
, . . . , zdk

} from multiple prior exams, we assign each exam date
di a trainable time embedding dti ∈ Rd. This vector is initialized randomly and
updated via backpropagation, allowing the model to learn how to position each
exam in the temporal axis. We then concatenate zdi with dti into a single to-
ken udi

, and feed the token sequence {ud0
, . . . , udk

} into a temporal transformer
that uses self-attention to capture inter-exam relationships. We also insert a
special [CLS] token, whose final hidden state sn ∈ Rd summarizes the entire
sequence, reflecting how the patient’s condition evolved over {d0, . . . , dk}. This
design inherently accommodates variable scan counts and irregular intervals, as



4 Mouadden et al.

Fig. 1: Overview of our pipeline. 2D/3D CT scans are taken as input and em-
bedded, these embeddings together with the date embeddings are combined into
an full sequence representation and provided to the conditional diffusion model
for future latent representation prediction. Task specific decoders can be then
used to retrieve the final output.

the transformer attends to each time embedding based on its learned represen-
tation of proximity or distance in the patient timeline.
Conditional Latent Diffusion Model. Given the temporal context sn and a
target date embedding demb

next, we apply a latent diffusion model [12] to predict
the future latent ẑdnext . During training, we have access to the ground-truth
“future” embedding zdnext , which we obtain by encoding the actual future data.
We progressively add noise to zdnext over T steps in a forward diffusion. A U-Net
style denoising network then learns to reverse it. At each step t, the network is
conditioned on sn, demb

next, and t, and predicts the noise to remove from zt.
Training Procedure and Losses. We train our pipeline by jointly optimizing
a diffusion denoising objective and a task-specific reconstruction loss depending
on the decoder. Let θ denote the parameters of our diffusion model and temporal
transformer. The overall loss that is minimized is summarized as,

L(θ) = Ldiff(θ) + λLtask(θ), (1)

where λ > 0 is a hyperparameter that balances accurate denoising against the
task specific loss depending on the decoder. We performed a small grid search
over λ ∈ {0.1, 0.5, 1.0, 2.0} on a validation subset and found that λ = 1.0 typi-
cally yielded the best balance between diffusion accuracy and final output per-
formance. Consequently, we fix this value for all experiments reported in this
paper. Using this design, we simultaneously teach the diffusion U-Net to recon-
struct future embeddings and to produce final outputs that match ground-truth
masks or reports. We use the default forward and reverse denoising process of
the diffusion model and mean square loss for the Ldiff(θ). For the Ltask(θ), we
used classical cross-entropy loss for the pixel-wise semantic segmentation as well
as the report generation. To make the training more robust to random time
intervals, during each training epoch, we randomly pick a future time dnext for
each patient, ensuring a wide distribution of intervals. This induces robustness
to variable follow-up durations, so the model generalizes better to time gaps not
explicitly seen in the training set.
Inference and Few-Shot Generalization. At test time, we do not have
ground-truth data for the future date. Instead, we sample an initial noise vector
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in latent space, then run the learned denoising model in reverse for T steps,
conditioned on the summary vector sn and demb

next. The result is a predicted fu-
ture latent ẑdnext which is then given to a pretrained decoder. For this study, we
tested one decoder for semantic segmentation of ILD disease and one for text
generation. This procedure accommodates varying amounts of historical data:
if the patient has many prior scans, the temporal transformer integrates all of
them; if only one or two are available, the model still provides a forecast. The
system naturally generalizes to unseen intervals or fewer time points, providing
a few-shot or zero-shot capacity in real clinical scenarios.
Implementation Details. We used UniMiSS [18] encoder, setting the latent di-
mension to d = 768. A temporal transformer with four layers of multi-head atten-
tion and feed-forward blocks processes the multi-time context, producing sn. Our
diffusion stage uses a U-Net [12] enhanced by cross-attention on (sn, d

emb
next) and

sinusoidal timestep embeddings; we typically choose T = 1000 steps for training,
with the option to reduce it at inference via accelerated sampling. For segmen-
tation, we employ the lightweight UniMiSS decoder that mirrors the encoder’s
resolution hierarchy, using transposed convolutions to reconstruct the mask from
ẑdnext . We fine-tuned this decoder for ILD segmentation. For text generation, we
use BioGPT [9] as a generative language model that cross-attends to ẑdnext , de-
coding radiology reports autoregressively. All modules are trained end-to-end
with separate final decoders for each domain. We use AdamW optimization and
tune hyperparameters (e.g. diffusion weights, cross-entropy weights) via valida-
tion. During inference, only the relevant task decoder (segmentation or text) is
needed, whereas the encoder, temporal transformer, and diffusion U-Net remain
shared across both tasks.

4 Results and Discussion

4.1 ILD Progression with Volume-Based Evaluation

We first apply our approach to forecasting future ILD progression in patients
with Systemic Sclerosis (SSc). For this task, we used a private dataset of 1,359

Table 1: Evaluation of fibrotic volume progression in SSc-ILD, using Dice (higher
is better) and adjusted Volume Difference (αVD; lower is better).

Method Dice αVD

Naive (Copy Last Volume) 0.65 0.52
No Diffusion (Deterministic) 0.27 1.89
SADM [19] (all Scans) 0.34 1.40
Ours (without diffusion, all Scans) 0.27 1.89
Ours (1 Scan) 0.55 0.93
Ours (3 Scans) 0.62 0.53
Ours (All Scans) 0.76 0.30
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Fig. 2: Qualitative comparison between different configurations of our approach
and SADM. Two 2D slices in axial view from different patients are presented
together with the disease regions superimposed in red color.

chest CT scans, all annotated for fibrotic tissue, collected over 16 years from
230 patients. Of these patients, we kept 30 as an independent test set. Unlike
single-time segmentation, our goal is to predict how fibrotic regions evolve at a
forthcoming date.
Evaluation Metric. Since stable fibrotic tissue can inflate overlap metrics
(such as Dice coefficient), we emphasize a volume-based measure to capture gen-
uine progression. Specifically, we adopt the adjusted Volume Difference: aVD =
|Vpred−Vgt|

Vlung
, where Vpred and Vgt are predicted vs. ground-truth fibrotic volumes,

and Vlung is total lung volume. Lower aVD implies better alignment in forecast-
ing the fibrotic burden and this is a metric added to the classical dice metric.
Baselines. We compare our method against the state of the art Sequence-Aware
Diffusion Model (SADM) [19] for generating longitudinal medical images and
two baselines including the naive which replicates the last known fibrotic vol-
ume, ignoring potential new growth and the no diffusion which is a simpler
deterministic version of our method that uses a direct MLP regressor from the
temporal transformer to the future embedding. This tests whether generative
noise-refinement significantly helps.
Results. Table 1 provides the aVD and Dice indexes for our different methods,
benchmarking as well the importance of the use of different scans. Our proposed
method, using all the available scans yields a dice of 0.76 and an aVD of 0.30,
outperforming both the naive baseline and the deterministic approach, while it
shows superiority with respect to the previous state of the art SADM model. Ad-
ditionally, Figure 2 presents two axial slices from different patients, illustrating
how our method performs when using only 3 scans versus all available scans,
compared to the ground truth. The first column shows the original CT slice,
with the fibrotic region in subsequent columns highlighted in red.
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Table 2: Radiology report generation on MIMIC-CXR (higher is better).
“+Prior” indicates usage of a previous exam.

Method +Prior BLEU-4 ROUGE-L CheXpert F1

R2Gen [1] No 0.14 0.28 0.27
ControlDiff No 0.13 0.28 0.28
Ours (Diffusion) No 0.15 0.30 0.31

Longitudinal Transf. [20] Yes 0.16 0.33 0.35
Ours (Diffusion) Yes 0.17 0.34 0.38

4.2 Longitudinal Radiology Reporting (2D X-ray)
We apply the same pipeline to the publicly available MIMIC-CXR[6], which
couples longitudinal chest X-rays with radiology reports. Our method encodes
prior and current images with the universal encoder, merges them via a temporal
transformer, then uses a diffusion-based text decoder to produce the new report.
Evaluation Metric. We measure BLEU-4 and ROUGE-L to capture n-gram
overlap with reference text and overall summary-like matching, respectively. Al-
though these metrics gauge fluency and surface similarity, they do not guar-
antee clinical correctness. To address this limitation, we also use a CheXpert
label F1 score, whereby an automated labeler extracts findings (e.g., “effusion,”
“cardiomegaly”) from both the generated and the ground-truth reports. This pro-
duces a label-based precision, recall, and F1 measure, reflecting how accurately
the model reports key pathological states. Such clinically oriented metrics better
reflect the actual diagnostic utility of the reports, albeit they can appear lower
than purely linguistic scores due to the strictness of label matching.
Baselines. We compare to three different approaches including the R2Gen [1],
the ControlDiff, a diffusion text generator without explicit multi-time condition-
ing, clarifying the benefit of temporal embeddings and the Longitudinal Trans-
former [20] which incorporates prior scans, but decodes autoregressively.
Results. Table 2 compares BLEU-4, ROUGE-L, and CheXpert F1, with or
without using a prior exam for the different methods. Our approach exceeds
all baselines in text quality and clinical correctness, especially when prior scans
are available. Moreover, Table 3 includes two examples of reports generated by
our method and the longitudinal AR baseline. Once more, our proposed model
using the prior scan generates more complete and accurate reports, encoding the
disease evolution.

5 Discussion and Conclusion

In this paper, we presented a single diffusion-based pipeline for two key longitudi-
nal imaging tasks: forecasting future pathology in 3D CT scans (as demonstrated
with SSc-ILD) and generating radiology reports over repeated 2D chest X-rays.
Our approach exploits a universal vision encoder to handle 2D/3D inputs, a
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Table 3: Examples of generated reports (paraphrased for brevity) across different
methods. GT = Ground Truth. “with prior” denotes models that incorporate the
previous exam.
Example 1:
Ground Truth (GT): “Large left pleural effusion has significantly decreased
since prior exam after thoracentesis. Moderate bibasilar atelectasis. Heart size
unchanged.”

Ours (with prior): “Marked decrease in left pleural effusion compared to prior
exam. Remaining small left effusion persists. Bibasilar opacities likely atelectasis.
Heart size is stable.”
Ours (no prior): “Large left pleural effusion is present. Bibasilar opacity consistent
with atelectasis. Heart size is mildly enlarged.”
(Fails to mention improvement, focusing on current findings only.)
Longitudinal AR Baseline (with prior): “Left effusion is improved from prior
exam. Left pleural effusion seen. Basilar atelectasis present. Cardiomegaly un-
changed.”
(Acknowledges improvement but redundantly repeats effusion.)

Example 2:
Ground Truth (GT): “Mild cardiomegaly with unchanged patchy pulmonary
edema. Small bilateral effusions, no significant interval change.”

Ours (with prior): “Mild cardiomegaly and pulmonary edema with no significant
change compared to prior. Small bilateral pleural effusions remain stable.”
Ours (no prior): “Mild cardiomegaly with patchy pulmonary edema. Small bilateral
pleural effusions are present.”
(Describes findings but omits explicit comparison due to lacking prior context.)
Longitudinal AR Baseline (with prior): “Heart size and pulmonary edema
similar to prior. Bilateral effusions unchanged. Mild cardiomegaly.”
(Conveys similar info but slightly less fluent ordering.)

temporal transformer to fuse multi-time embeddings, and a conditional diffu-
sion process that iteratively refines a “future” latent representation, decoded as
either a segmentation mask or text. Empirical results show notable improve-
ments in volume-based ILD progression metrics and language/clinical metrics
for multi-exam reporting. While partial stability of disease regions can compli-
cate overlap-based metrics, our volume-based measure underscores the benefit
of generative diffusion in capturing progression. Similarly, the text generation
experiments validate that parallel refinement can yield more coherent references
to changes than standard autoregressive decoders. Future directions may include
difference-based annotations for new fibrotic tissue, synergy between predicted
masks and textual descriptions, and integration of external clinical information
for even richer forecasting. We believe that unifying multi-dimensional imag-
ing with a single generative pipeline opens the door for more holistic, efficient
solutions to the challenges of real-world longitudinal imaging.
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