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Abstract. Automated Breast Ultrasound (ABUS) provides three di-
mensional volumetric imaging that improves breast lesion detection with-
out radiation exposure and reduces operator dependency. However, the
resulting high data volume poses significant challenges for radiologists in
localizing lesions accurately and distinguishing benign from malignant
cases—challenges that can directly impact early diagnosis and treat-
ment outcomes. To tackle these critical issues, we propose SAMASK-
CLTR (Spatial-Aware Mask Prompting with Convolutional Transformer
Architecture), a hybrid framework that combines the feature extraction
power of CNNs with the global modeling capability of Transformers.
In our approach, ResNet-50 extracts hierarchical, multi-scale features
that are refined by a Transformer encoder-decoder to capture global
context. Crucially, during decoding, a mask prompt enhanced with 3D
positional encoding guides the network to focus on key tumor regions,
directly addressing the challenges of precise localization and classifica-
tion. Experiments on 7,073 ABUS images—including 6,973 clinical cases
from Internal Datasets and 100 cases from the public ABUS Challenge
Cup—demonstrate that SAMASK-CLTR achieves AUCs of 88.45% and
70.46% on internal and external datasets, respectively. These results
highlight the potential of our framework to significantly enhance breast
cancer diagnosis by improving the accuracy and reliability of lesion clas-
sification. Code available at: https://github.com/SAMASK-CLTR/Code

Keywords: Auto Breast Ultrasound System · Computer Aided Diag-
nosis · Mask Prompt · Spatial Aware

1 Introduction

1.1 Background

Breast health is a critical concern for every woman. Among newly diagnosed
female cancer cases, breast cancer accounts for up to 31% [21], making it the sec-
ond leading cause of cancer death in women. Therefore, early detection of breast
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abnormalities, especially malignant changes, is crucial for increasing treatment
success and improving quality of life, underscoring the importance of regular
screenings [16].

Currently, three main methods are used for breast screening: mammogra-
phy, breast ultrasound, and Automated Breast Ultrasound (ABUS). ABUS not
only retains the advantages of traditional ultrasound but also captures three-
dimensional ultrasonic information from multiple views, generating more com-
prehensive images of breast tissue [17]. This multi-view capability has increased
its clinical adoption among both patients and doctors. During an ABUS examina-
tion, the device’s probe automatically scans the entire breast, producing detailed
three-dimensional images, which makes the process more convenient. Figure 1
shows the three views of ABUS. However, its multidimensional and multi-view
nature also demands advanced interpretation skills from radiologists—especially
junior physicians—as the large data volume can lead to higher rates of missed
diagnoses. Although the application of Computer-Aided Detection (CAD) tech-
nology has improved diagnostic accuracy by assisting doctors in interpreting
these complex images [27], the inherent challenges of 3D data remain.

Fig. 1. This image shows different view of the same breast (AP, LAT, MED) and the
framework of the four different input modes we compared.

In recent years, there has been remarkable progress in related tasks. For
detection tasks, single-stage networks proposed in [29,26,14,19,24,18] are capable
of fast and accurate lesion detection.For segmentation tasks, [2,3] suggest using
a dynamic contrastive learning framework and a Teacher-Student Framework to
improve segmentation performance. Meanwhile, models that incorporate prompt
mechanisms, such as the Segment Anything Model (SAM) [9] and One-Prompt
Segmentation [22], have demonstrated significant potential in the field of medical
imaging. By leveraging prompt information [10,12,8,11,13,28,4,5], these models
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significantly boost segmentation performance or exhibit strong adaptability for
multi-task processing.

Although prompt-based models achieve significant performance improvements,
their primary focus remains on the segmentation or localization of suspicious le-
sions, rather than directly determining the pathological nature of the lesions
themselves. In benign and malignant classification tasks, many strategies aim to
improve classification performance by operating on the region of interest (ROI).
For instance, [32,1,20,25] reduce interference from surrounding redundant infor-
mation, thereby enhancing classification accuracy. However, compared to ROI
manipulation, directly utilizing prompts offers a more efficient and straightfor-
ward approach. Studies such as [23,7,6,15,30] adopt Vision Transformer (ViT)
architectures for ultrasound image classification, but the global attention mech-
anism of ViT requires large amounts of data, which can easily lead to overfitting.

To overcome these challenges and directly address the pathological classi-
fication task, we propose SAMASK-CLTR, a spatial-aware mask-prompted
classification framework for 3D breast ultrasound imaging. This framework em-
ploys ResNet-50 as the backbone for hierarchical feature extraction, combined
with a Transformer to encode multi-scale semantic representations. A key in-
novation is the introduction of positionally encoded mask prompts during the
decoding phase, which enhances the model’s spatial awareness and tightly asso-
ciates the feature space with tumor regions, significantly improving classification
accuracy.The contributions of our research are threefold:

– We propose a hybrid CNN-Transformer model that integrates spatial-aware
mask prompts for direct benign-malignant classification, achieving substan-
tial improvements over conventional CNNs.

– We systematically evaluated multiple input modes and thoroughly analyzed
their impact on classification performance.

– We conducted extensive experiments on large-scale clinical and public datasets,
validating the cross-dataset generalization capability of SAMASK-CLTR.

2 Method

SAMASK-CLTR The SAMASK-CLTR model is a hybrid architecture that
integrates convolutional neural networks with Transformer for three-dimensional
data processing. Figure 2 shows the overview of our SAMASK-CLTR. The frame-
work employs a 3D ResNet-50 network for multi-scale spatial feature extraction,
where hierarchical feature maps are concatenated at the output stage and en-
hanced with three-dimensional positional encoding to capture spatial relation-
ships. These encoded features are then fed into the Transformer encoder. In
the decoder design, we replace the standard multi-head self-attention (MSA)
mechanism with a Multi-Scale Deformable Attention module. This advanced
mechanism adaptively samples features from multi-scale maps through learn-
able dynamic offsets, enabling the model to focus on task-relevant local regions
while reducing computational cost and memory consumption, we integrate the
query (Q) from the decoder with Spatial-aware Mask Prompts, combining tumor
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mask information with dense spatial-scale encoding, and the Key (K) propagates
feature information between the decoder layers. This fusion is then fed into the
network to guide attention toward lesion areas more effectively. Finally, feature
fusion from multiple decoder layers produces the prediction, with the entire net-
work optimized end-to-end using cross-entropy loss for binary classification.

Fig. 2. SAMASK-CLTR: In this architecture, the backbone first extracts multi-scale
feature information, and after applying positional encoding and flattening, feeds these
features into the encoder module. Meanwhile, the Mask incorporates spatial positional
encoding and downsampling before being fused with the decoder.

Deformable Attention and MSDeformable Attention Deformable Atten-
tion addresses the computational bottleneck of standard self-attention through
dynamic sparse sampling [31]. Given a query element with feature zq and refer-
ence point coordinates pq ∈ R3, the attention operation is formulated as:

DeformAttn(zq,pq, x) =

M∑
m=1

Wm

[
K∑

k=1

Amqk ·W ′
mx (pq +∆pmqk)

]
, (1)

where M denotes the number of attention heads (typically M = 8), K is the
number of sampled points per head (empirically set to 4), ∆pmqk ∈ R3 represents
learnable offsets predicted from zq, and Amqk are attention weights normalized
via softmax over K points. The trilinear interpolation operation x(·) enables
differentiable sampling from feature volume x, facilitating gradient flow.
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MSDeformable Attention extends this mechanism to multi-scale feature vol-
umes {xl}Ll=1 with different spatial resolutions:

MSDeformAttn(zq, {pl
q}) =

L∑
l=1

K∑
k=1

Aqkl ·Wlxl (ϕl(pq) +∆pqkl) . (2)

Here ϕl(·) performs coordinate scaling to match the l-th feature level’s resolution
(e.g., for L = 4 levels with downsampling rates of {1/2, 1/4, 1/8, 1/16} along each
axis relative to the input volume).

3D Position Embedding To extend positional information to volumetric data
, we extend positional encoding from 2D to 3D to capture spatial relationships
in three-dimensional space. We present the formula for 3D positional embedding
here:

PE
(z)
(pos,2i) = sin

(
z

T
2i
d

)
, PE

(z)
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. (5)

Spatial-aware Mask Prompts We propose a spatial-Aware mask prompt
scheme. First, the tumor mask M ∈ RH×W×D, extracted from the input image,
is enhanced via 3D sinusoidal-cosine positional encoding:

Menc(x, y, z) = M(x, y, z)⊕ [PEx(x) ∥ PEy(y) ∥ PEz(z)] ,

where PEx, PEy, PEz are positional encoding functions along three axes, ⊕
denotes element-wise addition, and ∥ represents channel concatenation. This
ensures each voxel in the mask jointly encodes semantic information (tumor
presence) and geometric 3D spatial coordinates. The encoded mask Menc is then
downsampled via multi-stage 3D convolutions to generate dimension-compatible
features F , which are linearly combined with the decoder’s initial query objects
Q:

Q′ = Q+ F.

and fed into the decoder for iterative refinement. By explicitly modeling spatial-
semantic correlations, this design significantly improves the model’s localization
accuracy and feature discriminability for tumor regions.

3 Experiment

3.1 Datasets

This study utilized an internal dataset along with the publicly available ABUS
Challenge Cup external dataset. To ensure patient privacy, all data were anonymized,
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with patient IDs replaced by unique identifiers. Tumor region masks were an-
notated by junior doctors invited by the research team, while bounding box
images of tumor regions were generated by cropping based on the annotation
files. The dataset was divided into an internal training set, an internal validation
set, and an external validation set from the ABUS Challenge Cup dataset. This
hierarchical partitioning strategy not only ensures rigorous model validation but
also evaluates the model’s generalization ability using independent external data,
thereby supporting the universality and clinical applicability of the research find-
ings. Table 1 shows the distribution of our datasets.

Table 1. Distribution of benign and malignant cases in internal and external datasets
by patients, ABUS/ABVS images, mask annotations, and lesions (external data used
for validation only)

Label Benign Malignant Total
Patient 2259(+42 Externals) 941(+58 Externals) 3200(+100 Externals)
ABUS/ABVS 5501(+42 Externals) 1572(+58 Externals) 7073(+100 Externals)
MASK 3888(+42 Externals) 773(+58 Externals) 4661(+100 Externals)
Lesion 4947(+42 Externals) 779(+58 Externals) 5726(+100 Externals)

3.2 Experimental details

Our model using ResNet-50 as the backbone network for multi-scale feature ex-
traction. Spatial features at 1/4, 1/8, and 1/16 resolutions were fused through
cross-scale concatenation with 1× 1 convolutions, then flattened and processed
by a Transformer module containing 4 encoder-decoder layers (hidden dim 256,
6 attention heads). A set of 512 learnable object queries established feature
correlations with the subsequent mask generation module, which incorporated
a 3D spatial-aware positional encoding mechanism. The input volumes were
preprocessed with random flipping (probability=0.3) and random contrast aug-
mentation. The model was trained for 100 epochs with an initial learning rate
of 1 × 10−4 , employing dynamic downsampling for query alignment and zero-
initialized pseudo-masks to address annotation incompleteness.

In addition, we designed three input modes: Mode 1 directly inputs the whole
image into the network; Mode 2 concatenates the image with its corresponding
mask before inputting to the network; Mode 3 crops the lesion region from the
image using the bounding box derived from the mask and inputs the cropped
image into the network. Figure 1 shows illustrative diagrams of different input
modes. All three modes, as well as our proposed model, adopted the same data
augmentation techniques to ensure experimental consistency and comparability.
Additionally, we addressed the issue of data imbalance by using random over-
sampling to increase the number of malignant samples.
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3.3 Comparison Experiment

We systematically evaluated three input modes (Whole Image input, Image-
Lesion Mask combined input, and Lesion Bounding Box Region input) and our
proposed model on both internal and external datasets. Table 2 summarizes
the performance metrics of different models under various input modes. The
experimental results show that in the Whole Image input mode, ResNet101
achieved AUC values of 79.28% (internal) and 56.22% (external), demonstrat-
ing the best performance; in the Image-Lesion Mask combined input mode,
DenseNet121 achieved AUC values of 76.45% (internal) and 62.71% (external),
achieving the highest performance; and in the Lesion Bounding Box Region input
mode, DenseNet121 achieved an AUC of 72.61% on the internal test set, while
SwinUnetr achieved 55.42% on the external test set. Consequently, ResNet101,
DenseNet121, and SwinUnetr were established as the state-of-the-art (SOTA)
baseline models for their respective input modes. Meanwhile, we compared our
proposed model with 3D DETR and SCPM-Net, and achieved AUC values of
88.45% on the internal validation set and 70.46% on the external independent
validation set. A comprehensive analysis indicates that our method significantly
outperforms existing models in terms of cross-dataset generalization and over-
all performance, with statistical significance (p < 0.01), further validating its
robustness.

Table 2. Performance comparison of different modes on internal and external datasets

Method Modes Internal Dataset External Dataset
AUC(%) ACC(%) SEN(%) SPE(%) AUC(%) ACC(%) SEN(%) SPE(%)

Densenet121 W 76.75 83.19 54.45 98.44 49.74 49.44 35.14 69.41
W+M 76.45 81.70 58.48 92.82 62.71 57.62 35.82 87.97

B 72.61 75.39 51.76 90.13 49.23 49.55 33.03 67.39
Resnet18 W 76.61 83.54 53.59 97.89 53.64 55.48 43.09 72.73

W+M 76.18 79.10 58.41 89.02 55.31 56.96 66.31 43.91
B 72.33 75.72 49.86 86.12 50.45 55.39 44.89 62.32

Resnet50 W 76.60 81.40 55.90 93.62 49.09 56.84 71.88 36.12
W+M 76.43 80.92 55.64 93.03 55.69 55.34 58.18 51.23

B 69.31 74.54 53.72 84.53 45.33 52.76 59.32 42.76
Resnet101 W 79.28 84.02 54.45 98.20 56.22 56.36 74.37 28.31

W+M 75.90 80.68 54.98 93.01 58.20 51.80 38.81 69.84
B 67.93 77.76 51.13 87.92 52.75 52.33 34.29 66.14

SwimUnetr W 78.48 82.99 53.63 97.07 48.87 49.44 30.43 75.87
W+M 73.23 83.30 53.81 98.92 49.13 41.52 32.97 83.56

B 67.22 72.43 49.88 90.34 55.42 60.73 22.42 71.31
3D DETR [26] W 73.96 78.51 57.00 88.82 54.84 48.00 16.81 91.14

B 68.29 72.88 47.77 82.76 52.17 45.56 24.18 88.72
SCPM-Net [14] W 74.33 82.01 56.30 94.33 48.89 40.68 9.48 83.82

B 66.73 80.13 53.29 87.38 45.75 41.54 13.43 82.14
Ours W+SAMP 88.45 84.13 79.63 86.29 70.46 70.90 76.68 51.69

Mode abbreviations: W = Whole image, W+M = Whole image with mask, B =
Lesion Bounding box region, W+SAMP = Whole image and spatial-aware mask
prompt.
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3.4 Ablation experiment

This study systematically evaluates three architectural configurations of the
SAMASK-CLTR model through module ablation experiments: (1) baseline CLTR
(without mask prompting module), (2) Mask Prompt CLTR (with mask prompt-
ing mechanism), and (3) Spatial-aware MASK prompt CLTR (joint optimization
of mask prompting and positional encoding). Table 3 summarizes the results of
the component ablation study on internal and external datasets. The experi-
mental results demonstrate that the mask prompting module achieves an 2.21
percentage-point improvement in classification AUC compared to the baseline.
The operates in two ways: During training, itguides feature learning by incorpo-
rating prior constraints on target regions, while during inference, it significantly
enhances lesion localization accuracy. When jointly optimized with positional
encoding, the model exhibits notable spatial awareness (11.43 percentage-point
additional AUC gain). This dual-optimization strategy not only strengthens spa-
tial feature representation but also effectively improves discriminative capability
for capturing critical characteristics distinguishing benign and malignant lesions.

Table 3. Component Ablation Study on Internal and External Datasets

Components Internal Datasets External Datasets
CLTR Mask Spatial AUC% ACC% SEN% SPE% AUC% ACC% SEN% SPE%
✓ 77.02 77.20 60.95 85.00 62.55 56.60 59.89 50.08
✓ ✓ 79.23 80.87 62.32 82.76 63.94 62.41 62.74 50.33
✓ ✓ ✓ 88.45 84.13 79.63 86.29 70.46 70.90 76.68 51.69

The ’✓’ mark indicates the modules that have been utilized.

4 Conclusion and Discussion

This study systematically analyzed the impact of different input modes on the
classification performance of the model and proposed an improved spatially-
aware mask prompt module to further enhance the model’s performance. In the
whole image input mode, the model can capture complete contextual informa-
tion, but it is also easily defocused by background , which limits the improve-
ment of classification performance. In the whole image with mask input mode,
although the mask provides a rough localization of the tumor and theoretically
helps the model focus on the target area, it fails to sufficiently suppress informa-
tion from non-mask regions during training, which instead introduces additional
interference and leads to a decline in performance. For the lesion region input
mode, directly cropping the tumor region effectively reduces background inter-
ference, but at the same time, it loses critical contextual information, which
limits the model’s classification capability. This study innovatively introduces
a spatially-aware mask prompting module. The proposed module combines 3D
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positional encoding with the masked image, making the spatial contrast be-
tween the tumor region and normal tissue more pronounced. During training,
this module guides the model to focus more accurately on the lesion region, sup-
pressing noise information introduced by surrounding tissues, thereby achieving
significant improvement in classification performance. Furthermore, this mod-
ule demonstrates strong generalization ability in cross-dataset testing, further
validating its effectiveness. Future work will focus on incorporating multimodal
information prompts to further enhance the model’s applicability in clinical set-
tings.
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