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Abstract. Epidermal growth factor receptor (EGFR) mutation status
is crucial for targeted therapy planning in lung cancer. Current identifi-
cation relies on invasive biopsy and expensive gene sequencing. Recent
studies indicate that CT imaging with advanced deep learning techniques
offer a non-invasive alternative for predicting EGFR mutation status.
However, CT scanning parameters, such as slice thickness, vary signif-
icantly between different scanners and centers, making the predicting
models highly sensitive to data types, and thus not robust in clinical
practice. In this study, we propose Feature Copy-Paste Network (FCP-
Net), an innovative and robust model for predicting EGFR mutation
status using CT images. First, we propose a novel Feature Copy-Paste
Consistency (FCPC) module to exchange the information from CT scans
with different slice thicknesses and impose consistency constrain to make
model more robust. Second, we introduce a Feature Refinement (FR)
module to filter redundant features during information fusion, thereby
enhancing the accuracy of mutation prediction. Extensive experiments
demonstrate the outstanding performance of the FCPC and FR mod-
ules. When the trained model is tested on both thin-slice and thick-slice
CT images, it achieves at least 2.6% and 2.1% improvements in AUC,
respectively, indicating the models’ robustness and stability. Our code is
available at https://github.com/499huangxingyu/FCPNet.
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1 Introduction

Epidermal growth factor receptor (EGFR) gene mutation status is critical for
the treatment planning of lung cancer[5]. In clinical practice, EGFR mutation
status is determined by biopsy and gene detection[9],[4], which is invasive, expen-
sive and can cause false-positive results due to tumor genetic heterogeneity[16].
Computed Tomography (CT) is a non-invasive and effective technique widely
used in lung cancer analysis. The easy accessibility of CT scans, along with
their potential correlations with gene expression patterns, enhances their utility
and enables CT to serve as a valuable tool for both clinical applications and
research[12,2].
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In earlier studies, radiomics-based methods have been explored for predict-
ing EGFR gene mutations[14],[15]. While these methods rely on handcrafted
features and often suffer from limited generalizability across datasets due to
imaging variability and feature instability. To overcome these limitations, deep
learning has emerged as a promising method that automatically learns hierarchi-
cal image representations and has shown strong potential in predicting EGFR
gene mutations from CT imaging[17],[20],[19],[3]. Nevertheless, CT images are
heterogeneous between different scanners and centers, which affects deep learn-
ing models largely. For instance, variations in slice thickness lead to differences
in data distribution, which in turn impact the robustness of the model. To im-
prove model robustness, Wang et al.[16] employed domain adaptation to learn
the relationship between thin- and thick-slice images. This method simultane-
ously extracts and integrates information from both slice thicknesses, effectively
alleviating heterogeneity between thin- and thick-slice data. Liu et al.[11] used
contrastive learning to enhance the model’s focus on lung parenchyma regions.
By integrating global and local features, this method alleviated the impact of
data heterogeneity and achieved robust performance in EGFR mutation status
predicting. Although the aforementioned methods enhance model stability, the
interaction between image features with varying slice thicknesses is crucial. If the
model fails to adequately extract and interact with these features, it may become
biased toward extracting information from a specific slice thickness, leading to
an inability to generalize and resulting in unstable performance.

To fully enable interaction between different data groups and improve the
network’s robustness, Image Copy-Paste (ICP)[18],[1],[10],[6] is a simple yet pow-
erful data augmentation technique widely used in computer vision tasks. It has
the potential to encourage the model to learn the distribution and semantic infor-
mation from diverse data groups. Based on ICP, utilizing copy-paste to exchange
information between thin- and thick-slice images enables the model to focus on
features that are consistent between two types of images. This approach has
the potential to further improve the model’s generalization capability. However,
medical images, especially lung CT scans, place more emphasis on texture and
anatomical details rather than overall contours, and this is where ICP has its
limitations. Medical images require fine-grained attention to these details, and
performing copy-paste operations at the image level may disrupt these critical
features, leading to instability in model performance. Additionally, although ICP
operations enhance information interaction and data diversity, they inevitably
distort the original image information during training[7], increasing the difficulty
of model prediction. In contrast, we believe that performing copy-paste opera-
tions in the feature space while enforcing consistency in both image and feature
spaces can alleviate image heterogeneity and improve model stability.

In order to exchange data information more effectively and enhance model
robustness, this paper proposes a novel Feature Copy-Paste (FCP) operation
based on ICP and introduces a Feature Copy-Paste Consistency (FCPC) mod-
ule to optimize the network. The FCP operation enables interaction between
different data in the feature space, enhancing data diversity and connectivity,
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while the FCPC module constrains various feature types to alleviate heterogene-
ity between data. Furthermore, to eliminate redundant features, we introduce
Feature Refinement (FR) module to refine features and improve prediction ac-
curacy. Extensive experiments demonstrate that the proposed method achieves
promising performance on both thin- and thick-slice CT images and also per-
forms well with limited training data, validating the model’s robustness.

2 Methodology

Figure 1 illustrates the architecture of the proposed FCPNet. We randomly pick
up a pair of CT scans (A,B) indicating thin- and thick-slice CT images of a
patient as original inputs. Then, we extract a random patch PA′ from image
A and PB′ from image B, and exchange PA′ and PB′ to generate the Image
Copy-Paste (ICP) inputs (A′, B′). Subsequently, the two input pairs are fed into
a shared-weight feature encoder (DenseNet) to obtain features (fA, fB , fA′ , fB′).
These features are sequentially optimized through the FCPC and FR modules.
Finally, the refined feature are utilized to predict lung cancer EGFR gene mu-
tation status.

Fig. 1. Overview of FCPNet

2.1 Feature Copy-Paste Consistency Module

(Image Copy-Paste) ICP has been demonstrated to be an effective data augmen-
tation strategy; However, while increasing data diversity, it may potentially loss
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original features and reduce the model’s robustness. To improve the model’s sta-
bility and robustness, we introduce the Feature Copy-Paste Consistency (FCPC)
module as shown in Figure 1. The two input image pairs are processed by the
encoder to generate two corresponding feature sets: the original input features
(fA, fB) and the ICP image features (fA′ , fB′). These one-dimensional features
are subsequently upsampled to match the size of the original images, obtaining
(FA, FB) and (FA′ , FB′). Similar to the ICP operation, patches (PFA′ , PFB′)
are extracted from the same locations in (FA′ , FB′) and undergo a copy-paste
operation to generate (F ′

A′ , F ′
B′). The original images are processed through ICP

to extract image features (fA′ , fB′), followed by the FCP operation at the same
locations to obtain corresponding features (F ′

A′ , F ′
B′). Theoretically, these fea-

tures should be consistent with the features of the original images (FB , FA).
Therefore, feature consistency constraints are imposed between (F ′

A′ , FB) and
(F ′

B′ , FA) to ensure that the network can enhance its stability and robustness
when adapting to varying images.

2.2 Feature Refinement Module

In the network, four different one-dimensional features (fA, fB , fA′ , fB′) are ex-
tracted through the encoder. However, these features include substantial redun-
dancy. To prevent such redundancy, we introduce the Feature Refinement (FR)
module. As demonstrated in figure 1, to better preserve the original image fea-
tures, the network firstly integrates fA and fB from the primary feature fp:

fp = Conv(C(fA, fB)) (1)

Where Conv(·) and C(·) represent the convolution layer and concatenation op-
eration.

Subsequently, we use fp as the template, and apply orthogonal projection to
filter out redundant features from fA′ and fB′ , as follows:

forth
x = fx − (

fx · fp
|fp|2

)fp x ∈ {A′, B′} (2)

Here, forth represents the refined features. Finally, a convolution layer is used
to fuse forth

x ,x ∈ {A′, B′} and fp to predict EGFR gene mutation status.

2.3 Loss Functions

Based on the above description, there are two optimization objectives in the
model: the prediction loss and the feature copy-paste consistency loss. The pre-
diction loss is computed using cross-entropy loss, while the feature copy-paste
consistency loss is enforced by the mutual information (MI) loss, which can be
expressed as:
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LF = MI(FA, F
′
A′) +MI(FB , F

′
B′)

MI(FA, F
′
A′) =

1

N

N∑
i=1

log
p(FA = FA

(i), F ′
A′ = F ′

A′
(i)
)

p(FA = FA
(i)) · p(F ′

A′ = F ′
A′

(i))

MI(FB , F
′
B′) =

1

N

N∑
i=1

log
p(FB = FB

(i), F ′
B′ = F ′

B′
(i)
)

p(FB = FB
(i)) · p(F ′

B′ = F ′
B′

(i))

(3)

Here, p(x, y) represents the joint probability, and p(x) and p(y) denote the re-
spective marginal probabilities. the total loss can be described as:

L = LC + λLF (4)

Where λ=0.5 is the hyper-parameter to trade off the contributions of the losses.

3 Experiments and Results

3.1 Dataset and Preprocessing

The dataset included 3433 patients with lung cancer from the West China Hos-
pital, each with EGFR gene detection result and multiple CT image scans of
different slice thicknesses. CT images with slice thicknesses between [0.5, 2.5]
mm were categorized as thin CT images (thin thickness domain), while those
with slice thicknesses between [3, 8] mm were thick CT images (thick thickness
domain). Since a patient may have multiple thin CT scans and thick CT scans,
we generated multiple thin-thick image pairs for each patient. Afterward, the
dataset was randomly divided into a training set with 2058 patients (3186 thin-
thick image pairs), a validation set with 342 patients (543 image pairs), and
a testing set (1033 patients with 1663 thin-thick image pairs). We first used a
publicly available U-Net model to segment the lung ROI in all 3D CT images.
Then, we resized the lung ROI to (256, 256, 48) voxel size and normalized it to
standardize the CT voxel intensity.

3.2 Implementation Details

To validate the effectiveness of the proposed FCPNet, we compared it with re-
cently reported models, including DenseNet-thin (DN.-thin, using only thin-slice
images as input), DenseNet-thick (DN.-thick, using only thick-slice images as in-
put), DenseNet-co (DN.-co, using both thin- and thick-slice scans as input)[8],
QSNet[16], and PLCHNet[11]. All models were implemented using PyTorch[13]
and trained with the SGD optimizer on NVIDIA GeForce RTX 3090 GPUs. In
all the comparison models, the default settings were used, except for the replace-
ment of the input with thin- and thick-slice CT images in PLCHNet.
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3.3 Comparison Results

We used the accuracy (Acc), sensitivity (Sen), specificity (Spe) and area un-
der the ROC curve (AUC) to evaluate the prediction performance. As shown
in Table 1, the proposed FCPNet outperformed other SOTA models. Specifi-
cally, our method achieved improved generalization and stability in images with
varying slice thickness compared to traditional DenseNet models. Compared to
the domain adaptation-based network QSNet, FCPNet achieved Acc/AUC im-
provement of 0.90%/4.99% in test set with thin-slice images, and 0.72%/2.86%
in test set with thick-slice images. Compared with contrastive learning model
(PLCHNet), FCPNet achieved Acc/AUC improvement of 2.42%/2.64% in test
set with thin-slice images and 1.79%/2.17% in test set with thick-slice images.

Table 1. Quantitative performance of different methods.

Test set Matrics Methods
DN.-thin DN.-thick DN.-co QSNet PLCHNet FCPNet

With thin-slice
CT images

Acc 72.760 71.737 69.753 73.000 71.918 73.662
Sen 0.533 0.509 0.350 0.743 0.577 0.494
Spe 0.757 0.704 0.828 0.512 0.699 0.800
AUC 0.700 0.670 0.662 0.701 0.717 0.736

With thick-slice
CT images

Acc 72.699 73.108 73.301 74.564 73.782 75.105
Sen 0.663 0.584 0.589 0.732 0.617 0.604
Spe 0.646 0.702 0.737 0.620 0.711 0.749
AUC 0.703 0.718 0.714 0.733 0.738 0.754

Figure 2 presented the ROC curves of different methods on test set with
thin-slice images and thick-slice images. As depicted in the figure 2, traditional
DenseNet-based methods showed significant performance fluctuations across dif-
ferent test sets, indicating model instability. In contrast, QSNet and PLCHNet
mitigated these issues partially. Comparatively, our FCPNet achieved the high-
est AUC value across the test sets with different slice thickness, demonstrating
the stability and robustness of the proposed FCPNet.

3.4 Ablation Studies

FCPC and FR Modules Table 2 showed the quantitative results of differ-
ent strategy combinations. From the table, we observed that the baseline model
only achieved AUC=0.68 and 0.71 in thin and thick CT test sets. Gradual incor-
poration of the proposed modules brought progressive improvements in model
performance. In contrast, compared to the baseline model, when all modules were
integrated, the model reached optimal accuracy, with the test AUC for thin-slice
image and thick-slice image improving by 7.76% and 6.20% respectively.

Feature Copy-Paste Consistency Loss Figure 3(a) illustrated the perfor-
mance comparison of different feature copy-paste consistency losses. As shown
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DN.-thin DN.-thick DN.-co

PLCHNet FCPNetQSNet

DN.-thin DN.-thick DN.-co

PLCHNet FCPNetQSNet

Fig. 2. ROC curves of different methods in the test set with thin-slice images and
thick-slice images

Table 2. Effectiveness of feature copy-paste consistency strategy and relevant modules,
with the baseline models using DenseNet. Bold values indicate the best result.

Methods FCP FLoss FR Test-thin CT Test-thick CT
Acc AUC Acc AUC

Baseline

72.519 0.683 73.060 0.710
! 72.339 0.658 73.361 0.706
! ! 72.519 0.703 74.323 0.744
! ! 72.760 0.699 72.820 0.724
! ! ! 73.662 0.736 75.105 0.754

in the figure 3(a), the model failed to achieve optimal performance without any
copy-paste feature constraints (w/o_Floss). However, introducing feature con-
sistency constraints largely improved prediction accuracy. Notably, when the loss
function was set to MI, the model achieved optimal performance. Furthermore,
introducing feature consistency constraints significantly improved prediction ac-
curacy by better aligning feature distributions, with AUC values reaching 0.736
and 0.754 in the thin-slice and thick-slice test sets, respectively.

Patch Size of Copy-Paste Operations Figure 3(b) depicted the impact of
using different patch sizes during the copy-paste operation. It was observed that
neither excessively large nor small patches enabled the model to achieve optimal
performance. We speculated that overly small patches failed to support adequate
information exchange, while larger patches were unable to preserve the original
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(a) Effect of feature copy-paste 

consistency losses 

(b) Effect of patch size of copy-
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Fig. 3. (a) AUC values of different feature copy-paste consistency loss functions. (b)
AUC values for various patch size in copy-paste operations

information. In our experiments, setting the patch size to (180, 180) allowed the
model to achieve the best performance, with AUC values of 0.736 and 0.754 for
thin-slice test set and thick-slice test set, respectively.

limited Training Data Figure 4 illustrated the AUC bar charts of different
methods under various proportions of training data. We observed that DenseNet-
based methods and QSNet were highly sensitive to the training data amount,
with the model collapsing when the training set size was reduced to 30% or 20%.
Although the performance degradation amplitude of the PLCHNet is relatively
smaller than DenseNet models, its accuracy still decreased 7.1% when the train-
ing data amount is only 20%. In comparison, although the prediction accuracy of
FCPNet also decreased with a reduction in training data, it remained relatively
stable. Even with only 20% of the training data, the model achieved AUC values
of 0.677 and 0.712 in thin-slice test set and thick-slice test set.

(a) Test on thin-slice images (b) Test on thick-slice images (a) Test on thin-slice images (b) Test on thick-slice images 

Fig. 4. AUC values of different methods under different training data amount. (a)
AUC values tested in test set with thin-slice images, (b) AUC values in test set with
thin-slice images
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4 Conclusion

In this study, we proposed a novel Feature Copy-Paste Network (FCPNet) for
predicting EGFR gene mutation status in lung cancer using CT images. The
Feature Copy-Paste Consistency (FCPC) and Feature Refinement (FR) modules
efficiently improved prediction performance. Notably, the model maintained su-
perior performance even with limited training data, demonstrating its robustness
and stability. Extensive experiments validated the effectiveness and superiority
of our method, highlighting its potential clinical applicability.
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