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Abstract. The generation of connectional brain templates (CBTs) has recently
garnered significant attention for its potential to identify unique connectivity
patterns shared across individuals. However, existing methods for CBT learn-
ing such as conventional machine learning and graph neural networks (GNNs)
are hindered by several limitations. These include: (i) poor interpretability due
to their black-box nature, (ii) high computational cost, and iii) an exclusive fo-
cus on structure and topology, overlooking the cognitive capacity of the gener-
ated CBT. To address these challenges, we introduce mCOCO (multi-sensory
COgnitive COmputing), a novel framework that leverages Reservoir Comput-
ing (RC) to learn population-level functional CBT from BOLD (Blood-Oxygen-
level-Dependent) signals. RC’s dynamic system properties allow for tracking
state changes over time, enhancing interpretability and enabling the modeling
of brain-like dynamics, as demonstrated in prior literature. By integrating multi-
sensory inputs (e.g., text, audio, and visual data), mCOCO captures not only
structure and topology but also how brain regions process information and adapt
to cognitive tasks such as sensory processing, all in a computationally efficient
manner. Our mCOCO framework consists of two phases: (1) mapping BOLD sig-
nals into the reservoir to derive individual functional connectomes, which are then
aggregated into a group-level CBT—an approach, to the best of our knowledge,
not previously explored in functional connectivity studies —and (2) incorporat-
ing multi-sensory inputs through a cognitive reservoir, endowing the CBT with
cognitive traits. Extensive evaluations show that our mCOCO-based template sig-
nificantly outperforms GNN-based CBT in terms of centeredness, discriminative-
ness, topological soundness, and multi-sensory memory retention. Our source
code is available at https://github.com/basiralab/mCOCO.

Keywords: Reservoir Computing · Connectional Brain Template · Cognitive ca-
pacity

1 Introduction

Neuroscience has traditionally focused on investigating individual brain connectivity on
a functional [2], structural [3], and morphological [1] levels. However, recent advance-
ments have shifted towards learning population-level connectivity by integrating multi-
graph brain networks into a unified representation: the connectional brain template
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(CBT) [4]. This normalized framework allows for group-level comparisons, biomarker
discovery, and the tracking of evolving discriminative connectivities over time through
the longitudinal CBT [5], among many other applications [6,8]. CBT learning has tra-
ditionally relied on conventional machine learning methods, such as clustering [7] or
multi-kernel manifold learning [12], and recent methods like graph neural networks
(GNNs), including the deep graph normalizer (DGN) [9], which uses edge-conditioned
GNNs to integrate multi-graph morphological networks into a single CBT. While these
methods show promise, they have key limitations. They are often considered "black
boxes" [10], hindering interpretability of the learned CBT. Additionally, they are com-
putationally intensive, demanding significant processing power and memory, especially
with large datasets. Finally, they focus primarily on the structure and topology of the
generated CBT, neglecting the cognitive traits, such as visual and auditory processing,
that are crucial to understanding human cognition.

This raises the question: How can we generate a more interpretable and cogni-
tively enhanced CBT with minimal computational cost? Addressing such question is
of paramount in developing more holistic templates that not only capture the topology
and structure of networks but also model how brain regions process cognitive infor-
mation. Such advancements would provide deeper insights and stronger comparisons
between healthy and disordered populations. To address this gap, we propose a novel
multi-sensory COgnitive COmputing (mCOCO) framework to learn population-level
CBT from BOLD signals endowed with cognitive traits. Specifically, we adopt RC [16]
as our foundational framework, as prior research highlights its effectiveness in mimick-
ing brain-like behavior. For example, Enel et al. [11] demonstrated that the prefrontal
cortex exhibits properties similar to RC. Damicelli et al. [18] explored the potential in-
fluence of connectivity on the performance of artificial neural networks across different
primate species using RC. Additionally, Xiao et al. [20] integrated RCs trained on dy-
namic memory tasks into GNNs for 4D brain connectivity forecasting. Nevertheless,
these methods primarily focused on random sequences and did not incorporate sensory
inputs such as vision or audio. One notable study incorporating sensory processing is
Katori et al. [14], which processed time-varying sensory signals and integrated feedback
for adaptive decision-making using predictive coding and reinforcement learning.

Our approach goes beyond sensory processing. To the best of our knowledge, we are
the first to use RC to learn individual and population-level functional connectomes from
BOLD signals. By projecting temporal signals into a high-dimensional state space, the
reservoir efficiently captures non-linear relationships [17] through its recurrent dynam-
ics. We hypothesize that our mCOCO framework will yield a more interpretable
and cognitively enhanced CBT. Unlike fully connected neural networks, where all
weights are optimized, RC only trains the output weights, making its learning process
more transparent and interpretable. We present three major contributions. On a method-
ological level, our mCOCO framework is the first RC-based approach to generate cog-
nitively enhanced brain templates. It consists of two phases (Fig.1): 1) we use a random
reservoir to map BOLD signals into a higher-dimensional space to derive individual
functional connectomes, which are then aggregated to obtain the group-level connec-
tome, 2) We incorporate multi-sensory inputs into a cognitive reservoir to investigate
memory retention across different modalities. On a conceptual level, our framework
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introduces the concept of cognitive CBT generation from a population of subjects, each
represented by their BOLD signals. On a clinical level, we demonstrate that mCOCO
generates reliable and biologically sound brain templates that capture the cognitive traits
of autistic subjects and reveal key differences when compared to typically developing
subjects across different sensory inputs.

Fig. 1. Overview of the mCOCO pipeline for generating cognitively enhanced CBTs. A) Func-
tional CBT Generation: BOLD signals are processed through a fixed random reservoir, pro-
ducing reservoir-encoded signals. Pearson correlation is then applied to construct subject-level
functional connectomes, which are aggregated into a population-level CBT. B) Cognitive Reser-
voir: The resulting CBT is instantiated in a cognitive reservoir that receives multi-sensory inputs
(visual, auditory, textual), to assess its memory capacity by predicting delayed input signals.

2 Method

In this section, we present the mCOCO framework, illustrated in Fig.1, consisting of
two components: (1) functional CBT generation from BOLD signals using a random
reservoir (Fig.1.A) and (2) a cognitive reservoir fed with multi-sensory input for cogni-
tively enhanced CBTs (Fig. 1.B).
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Functional CBT generation. The first block in our framework (Fig.1.A) encodes the
process of generating functional CBT using a random reservoir. Given a set of N train-
ing subjects, each subject S is represented by BOLD signals Xi ∈ RR×T where R is the
number of regions of interest (ROIs) and T is the number of timepoints. These signals
represent the time-varying neural activity across different ROIs in the brain. For each
subject, the signals are mapped onto a high dimensional reservoir space through the
input weight matrix Win. By feeding them into the reservoir, the network’s recurrent
dynamics capture non-linear temporal dependencies between brain regional activities
that might not be immediately depicted in the raw signals. The internal reservoir states
h(t) are updated iteratively as follows:

h(t+ 1) = (1− αr)h(t) + αr tanh (WinXi(t+ 1) +Wresh(t)) (1)

where h(t) ∈ RM is the reservoir state vector at time t, with M being the number
of neurons in the reservoir. Win ∈ RM×R is the input weight matrix that projects the
BOLD signals into the reservoir, Wres ∈ RM×M is the recurrent weight matrix that
governs the internal dynamics of the reservoir, αr ∈ [0, 1] is the leak rate, which con-
trols the balance between retaining previous states and incorporating new inputs. Once
the reservoir states are stabilized over all T time points, we obtain the learned subject
signals Xu

i ∈ RR×T , where each time point of the new signal is derived from the accu-
mulated reservoir state vector h(t) (Fig.1.A). This process captures the temporal evo-
lution of neural activity, encoding both short-term and long-term dependencies. Next,
we compute the functional connectivity for each subject (Fig. 1.A) by calculating the
Pearson correlation coefficient between the final learned signal states Xu

i of each pair
of ROIs. By transforming raw BOLD signals into reservoir states, we generate a richer
representation of brain activity that captures both temporal dynamics and non-linear in-
teractions. This improves the robustness of functional connectivity computation, unlike
conventional methods that assume linearity and ignore non-linear dynamics. We apply
this process to each subject, producing an individual functional connectivity matrix.
These matrices are then aggregated to form a population-level CBT (Fig. 1.A).

Proposed Multi-Sensory Cognitive Reservoir. In the second stage of our framework
(Fig. 1.B), we incorporate multi-sensory inputs {Pk}ck=1, where c is the number of
modalities. We adopt an Echo State Network (ESN) architecture [21], using the gener-
ated functional CBT as the reservoir. The CBT serves as a recurrent network to capture
cognitive functionalities, processing diverse sensory inputs (e.g., visual, auditory, and
language signals). Each modality is represented by an input Pk ∈ RDin,k , with dimen-
sionality Din,k, and fed into the reservoir via input weight matrix Win ∈ RR×Din,k .
The recurrent matrix Wres ∈ RR×R processes inputs over time, updating the reservoir
state hk(t) based on the current input and previous state. The leak rate αp controls the
balance between these components. The update rule is given by:

hk(t) = tanh
(
αpW

k
inPk(t) + (1− αp)W

k
resh

k(t− 1)
)
, k ∈ {1, . . . , c} (2)

To evaluate the reservoir’s ability to retain and recall information over time, we
train it to predict delayed versions of its input. Specifically, for a given time lag τ ,
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the reservoir learns to reconstruct the input from t − τ based on the current state at
time t. This involves predicting Pk(t − τ) given hk(t). For example, if the input is a
sequence of MNIST digits (e.g., [3, 4, 5, 6]), the reservoir learns to predict [0, 3, 4, 5]
when given [3, 4, 5, 6] as input, where the first prediction is set to zero due to the ab-
sence of prior input before the sequence starts. By training the reservoir to predict these
delayed inputs, we are effectively teaching it to model memory. Memory, in this con-
text, is time-dependent, meaning the brain network has the ability to recall information
over different time lags. We aim to evaluate and learn this temporal memory through
the reservoir’s prediction task. Finally, the predicted output for the k-th modality at time
t is computed using the readout weights Wk

out ∈ RR×Dout,k as:

P̂k(t) = Wk
outh

k(t) (3)

The goal is to minimize the error between the predicted output P̂k(t) and delayed
version of the true input Pk(t− τ). Thereby, endowing the brain template with a multi-
sensory recall capacity. The error can be quantified using a loss function, typically the
mean squared error (MSE) across Tp time steps:

L =
1

Tp

Tp∑
t=1

(
P̂k(t)−Pk(t− τ)

)2

(4)

3 Experiments and Results

Dataset. In this study, we used a dataset of BOLD signals downloaded from the Autism
Brain Imaging Data Exchange (ABIDE) website 3. The dataset includes a total of
884 subjects from all sites, comprising 408 individuals diagnosed with Autism Spec-
trum Disorder (ASD) and 476 typically developing (TD) controls. Preprocessing of the
ABIDE data was performed using version X of the Configurable Pipeline for the Anal-
ysis of Connectomes (C-PAC). The BOLD signals were parcellated using the Harvard-
Oxford Atlas (HOA) into 111 ROIs based on anatomical structures.
Hyperparameter tuning. For the CBT generation, we used a random reservoir with
M = 111 neurons. The leak rate was set to αr = 0.5, and the spectral radius was
fixed at 1.45 to ensure stable dynamics. The reservoir weight matrix Wres and the input
weight matrix Win were sampled from a uniform distribution in [−1, 1]. To evaluate
the generalizability of our model, we performed 5-fold cross-validation.
Sensory input. We used three cognitive inputs: i) the visual input, we selected 100
samples from the MNIST dataset [22], downsampled to 15 × 15 pixels, normalized
to [−1, 1], and flattened into 225-dimensional vectors. ii) the auditory input, we used
segments from Beethoven’s Ode to Joy and a Quranic recitation, both transformed into
Mel-Frequency Cepstral Coefficients (MFCCs) via the librosa library. iii) the textual
input, we used the Gutenberg corpus from the NLTK library, generating word embed-
dings with a trained Word2Vec model. For all modalities, the input data was split into
80-20 training and testing sets, with a maximum time lag τmax = 20. The ESN was

3 https://preprocessed-connectomes-project.org/abide/download.
html
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configured with spectral radius ρ = 0.99, input scaling ϵ = 1, and leak rate αp = 1,
and implemented using the echoes library [15].
Benchmark method. We selected DGN [9] as our benchmark method, as it outper-
formed seven integration models for generating CBTs, as shown in the comparative
survey [4]. This positions DGN as a state-of-the-art method for our evaluation.

3.1 CBT evaluation

In this work, we generated two distinct CBTs (ASD and TD) and evaluated their cen-
teredness, cognitive capacity, discriminativeness and topological soundness.

Fig. 2. Centeredness comparison between CBTs using mean Frobenius distance.

Centeredness. To assess the CBT centeredness, we quantify the deviation of the learned
templates from the left-out subjects using the mean Frobenius distance dF (C,M) =

1
Ntest

∑Ntest

j=1 ∥C−Mj∥F . This measures the discrepancy between the generated CBT
C and the functional connectivity matrices Mj of the testing subjects, evaluating how
well the CBT generalizes to unseen data. The dataset was split into training and testing
sets using 5-fold cross-validation, with the CBT trained on the training set and cen-
teredness assessed on the left-out samples. Our results show that the mCOCO-based
CBT significantly outperforms the DGN-based CBT across all folds (Fig. 2) as indi-
cated by the p-value (p << 0.001). This superior performance is due to mCOCO’s
ability to capture dynamic temporal dependencies in the BOLD signals, which are key
to modeling complex connectivity patterns in ASD and TD populations.

Cognitive Capacity. To evaluate the cognitive capacity of the generated CBTs, we
assessed their ability to retain and recall information across various sensory modali-
ties: visual, textual, and auditory. This was achieved by measuring the memory capacity
(MC), which quantifies the reservoir’s ability to reconstruct delayed versions of its input
at different time lags. MC is computed as the cumulative score of squared Pearson corre-
lation coefficients (ρ) between the true delayed input Pk,τ and the predicted output P̂k,
defined as MC =

∑τmax

τ=1 ρ2(Pk,τ , P̂k). Higher MC values indicate better recall, re-
flecting superior cognitive capacity. The mCOCO-based CBT consistently outperforms
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Fig. 3. Comparison of memory capacity across various input types (Visual, Textual and Audio).
Results show the performance across five folds, with the final bar representing the average and
error bars indicating variability.

the DGN-based CBT, particularly for text and audio, supporting our hypothesis that
mCOCO generates more cognitive templates. The visual stimuli, represented by hand-
written digits from the MNIST dataset, show the lowest MC values (< 1) across both
ASD and TD groups. This is likely because the lack of temporal complexity does not
fully engage the reservoir’s nonlinear dynamics. Visual processing primarily involves
the hierarchical and parallel processing of features in areas like the primary visual cor-
tex and higher-order regions, which may not align well with the sequential nature of RC.
Exploring techniques like Hebbian learning and intrinsic plasticity [17] could enhance
RC performance in visual tasks. In contrast, the text input demonstrates higher memory
capacity (MC > 2) values compared to MNIST. These higher values indicate that the
mCOCO-based CBT effectively retains the semantic and syntactic structure of the input
text, allowing the model to reconstruct earlier parts of a sentence across various time
lags. Individuals with ASD often struggle to integrate linguistic contexts, which may
reduce their retention of sequential information during text processing [27]. This aligns
with the lower average MC values observed in ASD compared to TD. Finally, the audio
input achieves the highest MC values (MC > 7 for Ode to Joy and MC > 11 for
Quranic recitation), consistent with the temporal richness of auditory signals, which
engage the reservoir’s nonlinear dynamics. The higher MC for Quran audio may stem
from the linguistic and prosodic rules that make the content more predictable and eas-
ier for the reservoir to model. This suggests that spiritually or culturally significant
auditory stimuli, like religious texts or prayers, may be processed and recalled more
easily[30,31]. The increased MC values may also reflect the emotional salience of spir-
itual content, which enhances attention and memory encoding, as the brain prioritizes
emotionally impactful information [30]. Spiritual stimuli often involve deeper cognitive
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processing and stronger connections to personal beliefs, leading to better retention and
recall [28].

CBT discriminativeness. To evaluate the discriminative power of generated CBTs,
we used a CBT-shot learning approach with an SVM classifier. The SVM was trained
on CBTs from two classes (e.g., ASD and TD) and evaluated on left-out subjects us-
ing 5-fold cross-validation.The results in Table 3.1 show that the SVM trained with
mCOCO-CBTs outperforms the one trained with DGN-CBTs, achieving 62.02% accu-
racy, significantly higher than the 51.3% achieved with DGN-CBTs.

Table 1. Performance of SVM trained on CBTs generated by mCOCO and DGN.

Model Accuracy Sensitivity Specificity F1
SVM-DGN [9] 51.36% 67.27% 32.93% 0.27
SVM-mCOCO 62.02% 42.93% 81.11% 0.52

Fig. 4. Average of Kullback-Liebler divergence distribution across 5-fold cross validation be-
tween a testing set and generated CBTs by mCOCO and DGN[9] respectively.

Topological Soundness. Here, we examined the distribution discrepancies of key topo-
logical measures (information centrality, Laplacian centrality, eigenvector centrality,
PageRank centrality, and node strength) between the generated CBTs and a set of left-
out subjects. To quantify these discrepancies, we utilized the Kullback-Leibler (KL)
divergence which measures the dissimilarity between two probability distributions. The
results, displayed as box plots in Fig. 4, show that our mCOCO-based CBT consistently
exhibits lower divergence across all evaluated measures compared to the DGN-based
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template. This finding suggests that the mCOCO-based CBT more accurately reflects
topological properties of the brain networks.

4 Conclusion

We introduced a novel multi-sensory COgnitive COmputing (mCOCO) framework,
generating a functional population-driven CBT from BOLD signals using random RC
while enhancing its cognitive capacity with multi-sensory inputs. Our framework pro-
duced a well-centered, topologically sound, and cognitively enhanced CBT, setting a
new benchmark in cognitive generative modeling. While this work focused on pairwise
brain region interactions, future work will extend it to capture higher-order interactions,
improving the representation of complex brain networks and cognitive functions.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.
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