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Abstract. Esophageal squamous cell carcinoma (ESCC) has high in-
cidence and mortality rates. While immunotherapy shows promise for
some ESCC patients, others can experience severe side effects. Accurate
pre-screening of individual patients’ immunotherapy response to ESCC is
a crucial but difficult task. Subtle differences in pre-treatment biomark-
ers hinder physicians’ judgment in pathological diagnosis. While patho-
logical foundation models (PFMs) have shown potential in pathology
image analysis, traditional PFMs focused on image-level features still
struggle to capture nuanced preoperative characteristic differences. To
address this, we propose a fine-tuning framework for PFMs based on
the tumor microenvironment (TME). First, morphological and topolog-
ical attributes are extracted from larger field-of-view patches to bet-
ter analyze TME interactions. Next, we utilize PFMs which are typ-
ically constrained to small inputs to extract image features. To ad-
dress this limitation, larger patches are subdivided to prevent precision
loss, with trainable position encodings maintaining relative spatial posi-
tional relationships to guide the re-aggregation of large patch-level rep-
resentations. Finally, a TME-guided learning algorithm trains all train-
able layers to understand ESCC-specific characteristics. Our framework
demonstrates superior performance in the downstream task of predict-
ing ESCC immunotherapy response compared to those fine-tuned using
self-supervised learning methods. By allowing flexibility in patch sizes,
our approach captures more contextual information. Code is available at
https://github.com/stoney03/ESCC.
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1 Introduction

Esophageal cancer is the 11th most common cancer globally and the 7th leading
cause of cancer-related deaths worldwide [2]. Esophageal squamous cell carci-
noma (ESCC) constitutes approximately 90% of annual diagnosed esophageal
cancers [1,15]. Due to the lack of specific early symptoms, ESCC remains a
major global health issue with a large clinical burden [21].

Immunotherapy has improved the treatment of ESCC [13]. However, some
patients experience severe adverse effects including immune-related inflamma-
tion and organ toxicity [L1]. Thus, physicians perform preoperative screening
using histopathology [16] to determine treatment efficacy. Unfortunately, the
preoperative differences between treatment responders and non-responders are
often subtle and physicians struggle to predict future clinical outcomes.

Deep learning techniques offer powerful tools to analyze whole slide images
(WSI), achieving performance that surpasses pathologists in specific diagnostic
tasks [3,5]. Most WSI analysis combines pathological foundation models (PFMs)
with multiple instance learning (MIL) methods [8,14,12,17,6]. Unfortunately,
these approaches have struggled in predicting clinical outcomes of ESCC im-
munotherapy [18]. This may be attributed to PFMs’ focus on image-level features
which, fail to capture more subtle characteristics. In contrast, cellular interac-
tions within the tumor microenvironment (TME) constitute more complex and
meaningful features [4,22]. TME-guided learning algorithms offer a promising so-
lution: learning tumor-related information from larger field-of-view patch-level
images, guiding the PFM model to extract beyond image-level features and in-
stead interpret TME characteristics, then generalizing to downstream tasks.

In this study, we present a novel TME-guided PFM fine-tuning framework de-
signed to predict ESCC immunotherapy efficacy. Recognizing that small patches
may hinder information acquisition from contextual interactions within the TME,
we employ larger patches to capture multi-cellular interactions. Next, we use
a PFM to extract image features. As most PFMs are designed for small-size
patches, we divide large patches into sub-patches to avoid compression loss. We
introduce adaptive position encodings to preserve relative spatial relationships
among embeddings critical for TME analysis. We also add a learnable feature
aggregation module to reconstruct the original larger-patch representations. The
TME information is subsequently used to fine-tune all trainable layers (i.e. un-
frozen layers in PFM, position encoding, aggregation model) with a better un-
derstanding of preoperative ESCC-specific differences between immunotherapy
responders and non-responders. In summary, the primary contributions of our
work are listed as follows:

(1) We introduce a novel, annotation-free fine-tuning framework for PFMs
using the TME to enhance the understanding of latent feature within WSI. Our
work improves model performance in downstream tasks for predicting ESCC
immunotherapy response.

(2) Our framework supports WSI analysis with flexibility in patch size while
minimizing contextual information loss. Large patches are subdivided down into
sub-patches that maintain relative spatial positional relationships and are then
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Fig. 1: Overview of our TME-guided fine-tuning framework for PFMs, with more
flexibility in patch size.

re-aggregated into a single informative representation. This method is simple,
effective, and easy to transfer to other pathology tasks.

(3) Our framework significantly improves the recall and F1 score of patients
who will respond to ESCC immunotherapy, as demonstrated by quantitative
evaluations on our collected dataset. This improvement has important clinical
implications.

2 Methodology

2.1 Overview

An overview of our framework to improve TME representation within PFMs
is shown in Fig. 1. This work begins by processing sub-patches derived from
large-scale patches through a PFM, where trainable positional encodings guide
the spatial re-aggregation of features into unified large-patch representations.
Subsequently, morphological and topological attributes are extracted from large
patches to construct TME representations. Finally, we use the similarity pat-
terns between TME features to guide and adjust the corresponding image patch
features, fine-tuning all trainable layers in the model. This approach leads to a
better performance in predicting ESCC future treatment outcomes.

2.2 Tumor Microenvironment Information Extraction

As illustrated in Fig. 1(b), we incorporate TME information based on clinical
experts’ prior knowledge [9,11] to bridge the semantic gap between complex
visual patterns and their diagnostic significance in data-limited scenarios. First,
we analyze the morphological characteristics and proportional distribution of
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various cell types within the TME, with particular focus on the opposing effects
of fibroblasts and inflammatory cells on tumor cells. Since tumor treatment
depends on their interaction with other cellular components, it is necessary to
construct an atlas to explore tumor-related ecosystem features. Therefore, we
use a pretrained HoverNet [7] model to perform patch-level segmentation and
classification of cells in WSIs, then we quantify their spatial distribution and
relative abundance. Finally, we utilize the sc-MTOP [20] method at the patch
level to characterize the ecosystem among tumor cells, inflammatory cells, and
stromal cells. This approach is consistent with the notion that spatially resolved
analysis can identify recurrent micro-ecological modules.

2.3 Large Receptive Fields Alignment

TME features containing rich spatial-level contextual information are obtained
at the large patch level. However, most PFMs can only intake small-sized patches.
Therefore, after subdividing large patches into sub-patches (Fig. 1(a)), we use
position encodings to maintain the relative spatial position information of the
sub-patches during the re-aggregation process.

Position Encoding is composed of two parts: the learnable position en-
coding and the row-column encoding. A large patch is subdivided into a
set of discretized sub-patches {p1,p2,...,pn}, where N is the total number of
sub-patches in the large patch. Each sub-patch p; is mapped to a vector e; € R?
in the embedding space using a PFM, where d is the embedding dimension.

(a) Learnable Position Encoding: This position encoding is represented by a
learnable parameter matrix P € R~ X4 which is initialized with a standard
normal distribution. This matrix is updated during training through gradient
descent and aims to provide a unique spatial representation for each patch.

(b) Row-Column Encoding: To incorporate the spatial position (row and
column) of each patch, we first define the row and column indices: r;,¢; € R
normalized to the range [0,1]. To encode the row and column information into
the embedding space, we construct a new matrix R € R~V X4 a5 the row-column
encoding, where the final dimension stores normalized row positions in the first
d

5 entries and normalized column positions in the second % entries. Thus, the

row-column encoding R is represented as:
75 Ci

e, = —— 1
H_1 Rz,d/2. W_1’ ()

where H and W are the number of rows and columns of sub-patches respectively.
The final position encoding PE € RV *9 is the sum of two components above.
The input feature map x € RV*4 is then augmented with PE to form the final
input representation.

Ri7:d/2 =

Sub-patch Aggregation We use a trainable combination of multi-head self-
attention (MSA) and a convolutional layer to aggregate features from sub-
patches. We first apply MSA to input features Z € RY*? then the attention
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weights A € RI>*NXN are used to compute a weighted sum of the attention
output O € R*N*d pooling the patch features: fuin poot = Squeeze(A-OT) €
RN*d Next, a convolutional layer Conwv(-) is applied to the aggregated features
to reduce the dimensionality and captures spatial patterns by the following for-
mula:

N
1
fogg = i E Conv (fattn_ poot)- (2)
i=1

2.4 TME-guided Learning

We propose an algorithm using TME information to fine-tune whole trainable
layers, focusing on ESCC-specific features (Fig. 1(c)). We define a batch of aggre-
gated image features as {fi,fs,...,fy;} and TME features as {cj,co,...,Cpr},
where M is the size of a batch, and each f; € R% and ¢; € R™ represents the i-th
patch respectively. The pairwise similarity between f; and f; is calculated using
the cosine similarity, and the same as c; and c;. Due to the symmetric nature of
the pairwise similarity matrix, we optimize computations by calculating only the
upper triangular portion of the matrices. The TME-guided loss function aims to
minimize the discrepancy between image feature and TME feature:

1 . - ,
Lro=7 S S (Suin) = Sili, ) — margin)?, 3)
(%) 1<i<M i<j<M
where Sy(i,7) and S;(i,7) represent TME and image feature similarity, re-
spectively.

3 Experiments

Datasets Our dataset consists of 128 ESCC patients’ pre-treatment H&E WSIs,
including 55 responders and 73 non-responders to immunotherapy. We identified
WSIs with consecutive slices and only retained unique slices to both streamline
the subsequent processing and mitigate the risk of overfitting. We adopted a
five-fold cross-validation approach (aggregate predicted results to calculate the
overall evaluation metric), then split the dataset into training, validation, and
testing sets randomly with a proportion of 6:2:2 for comprehensive evaluation.

Table 1: Pre-experiment with different feature types. #: frozen; &: concatenation.

Feat Type Method ACC AUC Recallg Flr

UNI[5]* CLAM|[14] 0.5469 0.5756 0.1636 0.2368
TME-W MLP 0.6328 0.5768 0.5455  0.5607
UNI[5]% & TME-W CLAM[14] 0.5703 0.5755 0.3455 0.4086

Ours CLAM[14] 0.7094 0.7274 0.6154 0.6273
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Table 2: Five-fold cross-validation performance of ESCC immunotherapy predic-
tion on various downstream models (DM).

UNI|5] Prov-GigaPath[19]
ACC AUC Recallg F1g ACC AUC Recallp Flr

Baseline 0.6172 0.5589 0.3455 0.3838 0.6094 0.6087 0.3818 0.4565
ABMIL|[8] Ours 0.6703 0.6771 0.5455 0.6000 0.7016 0.6915 0.5909 0.5821
A 0.0531 0.1182 0.2000 0.2162 0.0922 0.0828 0.2091 0.1256

Baseline 0.6172 0.6481 0.3636 0.4494 0.5938 0.5636 0.3455 0.4176
CLAM][14] Ours 0.7094 0.7274 0.6154 0.6273 0.6938 0.6579 0.5727 0.6000
A 0.0922 0.0793 0.2518 0.1779 0.1000 0.0943 0.2272 0.1824

DM

Baseline 0.6094 0.6192 0.3091 0.4048 0.6094 0.5793 0.3273 0.4186
DSMIL[12] Ours  0.6859 0.7167 0.5391 0.5636 0.7172 0.6963 0.6000 0.5739
A 0.0765 0.0975 0.2300 0.1588 0.1078 0.1170 0.2727 0.1553

Baseline 0.5625 0.5953 0.3818 0.4286 0.5703 0.5469 0.3636 0.4211
TransMIL[17] Ours 0.6625 0.6980 0.5484 0.6182 0.6594 0.6943 0.6364 0.5833
A 0.1000 0.1027 0.1666 0.1896 0.0891 0.1474 0.2728 0.1622

Implementation Details All WSIs were tiled into non-overlapping patches
of 1120 x 1120 pixels at 40x magnification. The first freezing layers of PFMs
(UNI [], Prov-GigaPath [19]) were set to 300. These patches were further divided
into sub-patches of 224 x 224 pixels to match PFMs’ input size, yielding final
feature dimensions 1 x 1024 and 1 x 1536, respectively. The experiment was
conducted on a GeForce RTX 3090. For fine-tuning, we trained the layers for 20
epochs using the Adam optimizer [10]. We used a learning rate of 0.0001 and
a batch size of 4 with gradient accumulation and mixed precision training. A
50-epoch training protocol was adopted for MIL methods with a batch size 16.

Preliminary Experiment Our approach leverages PFMs’ pretrained weights
and TME features, prompting pre-experiments to assess their performance. We
evaluated five-fold cross-validation results with frozen UNI image features (224
pixels), TME features in WSI level (TME-W), and their concatenation. TME-
W were classified by Multilayer Perceptron (MLP), while others used the MIL
method CLAM [14]. Table 1 indicates that TME contributed to performance
improvement, prompting the use of it to fine-tune PFMs in our framework.

Baseline Comparison We use accuracy (ACC), the area under the receiver
operating characteristic curve (AUC), Recall (Recallg), and F1 score (F1g) as
metrics for evaluation, where R stands for the class response to immunotherapy.
For our experiments, we fine-tuned unfrozen layers of PFMs (UNI and Prov-
GigaPath), position encoding, and aggregation module. For a baseline, we use
the same unfrozen layers of PFMs fine-tuned using the self-supervised learning
approach, with input size 224 pixels. We then conducted a comprehensive eval-
uation using classical and advanced WSI analysis methods (ABMIL [8], CLAM,
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Table 3: Performance evaluation of our framework with different input patch
sizes using UNI with CLAM.

Patch Size ACC AUC Recally Flgp

672 (3%x224) px 0.6781 0.6851 0.5818 0.5424
896 (4x224) px 0.6859 0.6888 0.5893 0.6225
1120 (5x224) px  0.7094 0.7274 0.6154 0.6273
1344 (6x224) px 0.6759 0.7012 0.6000 0.5982

DSMIL [12] and TransMIL [17]) with a five-fold cross-validation strategy to
assess the performance of both the baseline and our proposed fine-tuning frame-
work. Table 2 shows that our framework significantly outperforms the base-
line across multiple MIL methods for ESCC immunotherapy respond prediction.
Specifically, we achieved a remarkable 63.64% Recallg and 71.72% ACC using
Prov-GigaPath, demonstrating substantial gains over the baseline. The high re-
call for the benefit class is particularly promising for clinical applications.

Table 4: Ablation Study of key components of our framework using UNI and
CLAM (input size: 1120 px). Agg: aggregation model; PE: row-column encoding.

Method ACC AUC Recallr Fljr
Jo TME UNI[5|+Agg+SSL 0.6250 0.6286 0.4000 0.4783
wro UNI[5]+PE+Agg+SSL 0.6328 0.6077 0.4000 0.4835

UNI[5|#+Agg+TME 0.6484 0.6262 0.4364 0.5161
w/o Learnable PFM y\1isle  PE+ Agg { TME 06562 0.6174 0.4545 0.5319
Jo Conv layer UNI[5]+MSA+TME 0.6250 0.6618 0.5455 0.5556
wyo Lonviaye UNI[5]+PE+MSA+TME  0.6875 0.7004 0.6000 0.6226
w/o PE UNI|[5]+Agg+TME 0.6679 0.6783 0.5818 0.5614
Ours UNI[5|+PE+Agg+TME  0.7094 0.7274 0.6154 0.6273

Ablation Study We conducted a series of ablation studies to validate our
framework’s key steps. (1) Large Receptive Fields: Results in Table 3 suggest a
larger field of vision helps PFMs better comprehend information in the TME.
However, accuracy drops as input size reaches 1344 pixels, likely due to challenges
in learning contextual relationships in images that are too large. (2) Tumor Mi-
croenvironment Features: We removed patch-level TME features and used self-
supervised learning to fine-tune UNI. Table 4 w/0o TME shows how the base
model is not suitable for ESCC-specific tasks. (3) PFM Freezer: We froze UNT’s
layers to isolate its impact on the experimental results. Table 4 w/o Learnable
PFM reveals that the incorporation of TME features is crucial for the effective
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Fig.2: Attention heatmaps comparison for WSI analysis methods: ABMIL,
CLAM, DSMIL and TransMIL. The blue boxes indicate the main areas of tumor
tissues with abundant stroma.

fine-tuning of PFMs, as freezing the UNI model resulted in minimal improve-
ments in prediction. (4) Convolutional Layer: We demonstrated that removing
the convolutional layer from the aggregation module led to a decrease in perfor-
mance (Table 4 w/o Conv layer), showing its necessity in complementing the
multi-head self-attention mechanism and improving feature representation. (5)
Row-Column Encoding: We aggregated sub-patch features without row-column
encoding and found 6.59% decrease in Flg (Table 4 w/o PE). This demon-
strates that positional encodings are effective at aligning with TME spatial
distribution. The results of our ablation studies show that all modules in our
approach are essential, each improving the PFM’s performance.

Attention Map Visualization Fig. 2 illustrates an H&E image belonging to
an immunotherapy responder with attention heatmaps generated by four WSI
analysis methods: ABMIL, CLAM, DSMIL, and TransMIL. The features uti-
lized for Fig. 2(1) and Fig. 2(2) are extracted by UNI after fine-tuning with the
baseline method and our proposed framework, respectively. In the first row, we
observe that all models exhibit nearly uniform attention across the WSI, with no
distinct regions of focus. In contrast, features from the TME-guided fine-tuning
framework in the second row help downstream models to generate distinct re-
gions of attention that focus on tumor tissues with abundant stroma, which are
associated with immunotherapy.

4 Conclusion

We propose a novel TME-guided fine-tuning framework for PFMs to predict
ESCC immunotherapy efficacy using histological WSIs. Unlike existing meth-
ods, our framework captures subtle biomarker variations using patch subdivi-
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sion to extract diverse TME features across the WSI; trainable position encod-
ings to effectively model spatial positional relationships within patches; and a
TME-guided learning algorithm to teach models richer and more robust rep-
resentations. Our findings demonstrate superior performance compared to self-
supervised learning methods, highlighting the effectiveness of our proposed ap-
proach. This will pave the way for more personalized and effective immunother-
apy treatment for ESCC patients.
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