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Abstract. Alzheimer’s disease (AD) is a progressive and irreversible
brain disorder. Emerging evidence suggests that A deposition in the
heart and microbiota dysbiosis in the gut may also contribute to the
pathogenesis of AD. However, currently no studies have integrated heart
and gut imaging information into AD diagnosis. To address this gap, we
propose the first framework to integrate brain, heart, and gut informa-
tion based on whole-body PET imaging and leverage these multi-organ
interactions to guide brain-only model for early AD diagnosis in clinical
applications. To this end, we collect multi-cohort data, including 1,475
unlabeled whole-body FDG-PET images, 1,730 brain FDG-PET images,
and 70 labeled high-quality whole-body FDG-PET images. Our AD diag-
nostic model consists of two stages: (1) feature extraction and alignment,
where AD-related features across brain, heart, and gut are extracted
and aligned via hierarchical Transformers using contrastive learning; and
(2) multi-constraint knowledge distillation, which utilizes sample-level
contrastive distillation, group-level distribution distillation, and response-
level distillation to transfer the performance of brain-heart-gut model
to the brain-only model. Experimental results show that, guided by the
learned interactions of brain, heart, and gut, our brain-only model im-
proves the area under the receiver operating characteristic curve (AUC)
from 75.4% to 80.3% for normal control vs. mild cognitive impairment
(MCI) classification, achieving comparable diagnostic performance of
using whole-body PET.

Keywords: Alzheimer’s disease - Brain-heart-gut - Whole-body PET -
Knowledge distillation.
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1 Introduction

Alzheimer’s disease (AD) is a progressive and irreversible brain neurodegenerative
disorder characterized by memory loss and cognitive impairment [I0J3]. Over 50
million people worldwide are affected by AD or other forms of dementia, and
the number will triple and reach more than 150 million by 2050 [14]. Therefore,
early diagnosis and intervention of AD becomes increasingly important. Over the
past few decades, numerous brain imaging-based methods have been developed
for early AD diagnosis [2]. Nevertheless, AD is a multifactorial disease, and its
progression is strongly influenced by peripheral organs [22]. The brain-centric
perspective, which focuses solely on brain imaging, may overlook the impact of
systemic factors and has nearly reached its performance upper bound within the
current network architecture. Integrating insights from peripheral organs could
further enhance the performance for early AD diagnosis.

Several hypotheses have been proposed to explain brain-organ interactions
for AD, with a particular focus on brain-heart and brain-gut [I7/20], respectively.
A key hypothesis suggests that pathological molecular deposits in the heart and
gut may contribute to brain damage, offering a potential pathway for early AD
diagnosis [O/I8|8]. However, the existing studies mostly rely on biofluid analyses,
which have not leveraged multi-organ molecular imaging for early AD diagnosis.

In the last decade, deep learning has been widely applied to early AD diag-
nosis, evolving from CNN to Transformer and from single modality to multiple
modalities [TTJAGITI2A2TIT2]. Recent studies intend to exploit multi-modal data
to improve the diagnosis performance. For instance, Sun et al. [19] proposed a
synthesis-empowered uncertainty-aware classification network for AD diagnosis
to achieve multi-modal classification using single-modal input via hierarchical
constraint-based modality synthesis. Despite the use of multiple modalities, these
methods are limited to the information of brain. To the best of our knowledge,
there is no Al-assisted research targeting early AD diagnosis by integrating brain,
heart, and gut data, leaving the interactions of these organs unexplored.

To address these issues, we aim to use whole-body 2-meter panoramic PET [I]
and multi-organ alignment to characterize brain-organ metabolic connectivity and
conduct whole-body studies of AD. Moreover, due to the scarcity of whole-body
PET scanners in clinics, we further propose to transfer the learned brain-heart-gut
correlations to the brain-only model by multi-constraint knowledge distillation
to achieve comparable diagnostic performance of using whole-body PET. To be
specific, our framework comprises three stages. In Stage I, our model is pretrained
on 1,730 brain PET images and 1,475 unlabeled whole-body PET images based
on self-supervised learning. In Stage II, the pretrained model is finetuned on 70
high-quality whole-body PET images with diagnosis labels, where hierarchical
Transformers with contrastive learning (CL) are employed to align the heart and
gut features towards brain to ease their integration for improved diagnosis. In
Stage III, a multi-constraint knowledge distillation framework including sample-
level contrastive distillation, group-level distribution distillation, response-level
knowledge distillation is introduced to transfer the integrated brain-heart-gut
features to the brain-only model. Therefore, the main contributions of this work
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Fig. 1. Illustration of our proposed method. We use whole-body PET images in the
training phase to guide the early AD diagnosis of using brain-only images during the
inference phase.

include: 1) development of the first AD diagnosis framework by integrating
brain, heart, and gut at the molecular level using whole-body PET imaging;
2) introduction of an advanced feature extraction and alignment scheme based
on hierarchical Transformers and CL, effectively aligning and integrating brain,
heart, and gut features; 3) design of a multi-constraint knowledge distillation
mechanism by capturing holistic cross-sample correlations, aligning inter-category
feature variations, and optimizing sentiment decision boundaries, to enhance the
transfer of brain-heart-gut features to brain features.

2 Method

The overall framework is illustrated in Fig. [[] The training phase has three
stages including 1) model pretraining; 2) feature extraction and alignment for
brain-heart-gut model; 3) multi-constraint knowledge distillation for brain-only
model. In the inference phase, only brain PET images are needed and can
achieve comparable diagnosis performance as using whole-body PET images.
More detailed descriptions are given in the following sections.

2.1 Model Pretraining

To fully use the collected unlabeled whole-body PET and labeled brain PET
images, we pretrain the image encoders of brain, heart, and gut individually. To
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pretrain the brain model, we develop a classification network based on ResNet-
34 [5], utilizing brain PET images from ADNI [7[I3/I6] and Huashan (HS)
Hospital. To pretrain the heart and gut models, we leverage heart and gut images
from the whole-body PET data acquired at the Hangzhou Universal Medical
(HZUM) Imaging Diagnostic Center. Since this dataset lacks disease-related
labels, we employ self-supervised reconstruction to pretrain autoencoders for the
heart and gut. The image encoders are also ResNet-34, and the image decoders
consist of four convolutional layers. The datasets are split into 7:1:2 for training,
validation, and test. To maximize the utility of our dataset, we further apply data
augmentation for training set including intensity scaling (0.95—1.05), rotation
(+10 degrees), and translation (within 10% of the image dimensions).

2.2 Feature Extraction and Alignment for Brain-heart-gut Model

The primary goal of Stage II is to achieve improved diagnostic performance
compared to the single-modal model through feature alignment and integration
of brain, heart, and gut. We finetune the pretrained model on whole-body PET
images by utilizing 1) contrastive learning (CL) to extract and align disease-
related heart and gut features towards brain features; 2) hierarchical Transformer
blocks to integrate brain-heart and brain-gut features.

Specifically, we employ the pretrained ResNet-34 encoders followed by several
convolutional layers to extract feature maps (with identical dimension) of brain,
heart, and gut. To extract disease-relevant and fusion-friendly features from the
heart and gut, we apply CL to facilitate their alignment with brain features.
Specifically, we freeze the brain features and impose similarity match between
the brain-heart features and the brain features. We perform the same approach
for the brain-gut features. In our experiments, given a mini-batch of B samples
{mg, mq, -, mp}, the extracted feature maps Fj,, Fj,, and F, all have the same
size of B x 512 x 16 x 16 x 16. These feature maps are averaged along the channel
dimension and flattened to a size of B x 4096. To compute the CL between the
brain and heart features, we transpose the brain features and multiply them with
the heart features, resulting in a similarity matrix PP of size B x B. Similarly,
we can also obtain the similarity matrix PP# for brain and gut. In the meanwhile,
we can construct the ground-truth similarity matrices y®" and y"®& for CL, where
the values corresponding to the same subject or the same classification label are
set to 1, and the remaining values are set to 0. It encourages the samples with
the same label to be clustered and with different labels to be pushed apart.

Subsequently, these extracted and aligned features of different organs are fused
through hierarchical Transformer blocks. To be specific, the feature maps Fy,, Fi,
and Fy are divided into 4 x 4 x 4 patches with each patch added with positional
encodings, resulting in the size of B x 64 x 64. The brain features are first passed
through a self-Transformer block to obtain features F}s. Brain-heart features are
fused through a cross-Transformer block, where brain features are projected as
K and V, while heart features are projected to Q. The same strategy is applied
to brain-gut and brain. After fusion, we obtain features Fi,;, and Fi,g, and these
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features are aligned for consensus using CL following the same procedure as
before. The CL loss Lcy, is formulated as:

b,I b,
Lop =—— § E (ym;,mjlog pm“'rnj) + ym, m; log(pmimj) +
=1 j=1
bh,b bh,b bg,bh bg,bh
Yy 108D e.) + Yner o log (Pt ) ) (1)

Finally, the fused features Fis, Fin, and Fi,z are concatenated to form Fipg.
The feature maps F,, Fg, Fis, Fon, Fbg, and Fypg, are passed into the individual
classifiers with cross-entropy as the classification loss. Therefore, the overall loss
for Stage IT can be formulated below:

Lstagert = M (Ln + Lg) + A2(Lbs + Lon + Lbg) + A3Lbng + AaLcL (2)

where Ly, Lg, Lus, Lpn, Lug and Ly,g are the cross-entropy losses, with the
weighting parameters tuned as Ay = 1, Ao = 0.8, A3 = 1.2, Ay = 0.3.

2.3 Multi-constraint Knowledge Distillation for Brain-only Model

In this stage, the objective is to enhance the diagnostic performance of the
brain-only model under the guidance of brain-heart-gut features. To achieve this,
we propose a multi-constraint knowledge distillation framework for knowledge
transfer, comprising sample-level contrastive distillation (SCD), group-level dis-
tribution distillation (GDD), and response-level knowledge distillation (RKD).
This mechanism endows the brain-only model to benefit from the trained brain-
heart-gut network.

The proposed SCD enhances holistic knowledge encoding by applying CL to
the sample-level representations. Specifically, brain-heart-gut representations and
brain representations from the same sample are similar, while those from different
samples remain distinct. We compute the similarity matrix PPP&P by multiplying
the network’s representations, resulting in a matrix of size B x B, where B is the
number of samples in a mini-batch. Additionally, we construct the contrastive
loss matrix y”"&P where the diagonal values are 1 and the off-diagonal values

mm7

are 0. The loss LSCD can be can be formulated as:

Lscp = _M Z Z U log(pmEn) 3)

m;=1mj;=1

Moreover, GDD is based on the core idea of refining and transferring knowledge
regarding group feature variations to address the issue of ambiguous feature
distributions. Formally, we denote the features of each sample as H}’, with
w € {bhg, b}, k € {MCI,NC}. The group feature variation matrix is defined as

follows:
wipy— HEO (G
MED = T LICET @
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where M}’ (i) denotes the similarity between the sample ¢ and the group repre-
sentation G}’ in network w. The brain-heart-gut and brain networks compute
distribution matrices M,‘jhg and M,‘j, respectively. We minimize the squared
Euclidean distance between these distribution matrices to maintain consistency.
The loss Lgpp can be formulated as:

Lopp = ;iq]m}g(i) — Miica ()|, + [|MREG) — M) ) )

i=1

The RKD employs the Kullback-Leibler (KL) similarity measure to maintain
information consistency between the brain-heart-gut and brain networks. The
loss Lrkp is defined as

Lrkp = t* x KL(p""8[[p"), (6)
where ¢ means temperature, set to 2, and pPP#, pP denote the predict scores of
brain-heart-gut and brain network, respectively.

The overall training objective Lgtagerrr is expressed as Lstagerit = AsLals +
A6 Lscp + A7 Lapp + AsLrep ,where L is the cross-entropy loss, and A5, Ag, A7,
Ag are the weighting factors for the loss terms, set to 1, 0.3, 0.3, 0.3, respectively.

3 Experiments

3.1 DMaterials and Experimental Setup

Our framework was evaluated on a relatively large set of paired whole-body
PET/CT and brain PET/MRI data from multiple cohorts. The study population
and characteristics are summarized in Table [1} For whole-body PET/CT data,
we utilized two datasets: the Hangzhou Universal Medical (HZUM) Imaging
Diagnostic Center (n=1475 without AD diagnosis labels) and Zhongshan (ZS)
Hospital (n=70 with AD diagnosis labels). For brain PET/MRI, we collected 1,242
PET/MRI scans from ADNI, 488 PET /MR scans from Huashan (HS) Hospital,
and 49 PET /MR scans from Zhongshan (ZS) Hospital. All T1-weighted brain
MRI scans underwent a standard pipeline for preprocessing, including intensity
correction, skull-stripping, and linear alignment to the Montréal Neurological
Institute (MNI) template. Each PET scan was aligned with its corresponding
MR image and transformed to the MNI template using the affine matrix derived
from the corresponding MR image. For heart and gut images, we resampled them
to the same isotropic spacing of 1 x 1 x 1 mm? as the brain images.

In our implementation, models were optimized using SGD optimizer. The
initial learning rate was set as 1073, and the mini-batch size was set as 8. We
trained the models using PyTorch on a single NVIDIA A100 GPU equipped with
80GB RAM. Across all the experiments, our models were evaluated by AUC,
accuracy (ACC), sensitivity (SEN), specificity (SPE), and F1-score (F1) with
mean value and standard deviation of five-fold cross-validation. The source code
is publicly available at https://github.com/lifan0321/BHG-distillation.
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Table 1. Study population and characteristics.

Dataset Modality Age Gender(M/F) Education MMSE
ZS Hospital
NC [n=43] whole-body PET/CT 65.7 & 7.0 19/24 124+32 N
MCI [n=27] whole-body PET/CT 68.1 +9.6 10/17 104+2.2 -
NC [n=27] brain PET/MRI ~ 60.8 £+ 8.8 10/17 10.2+4.1 -
MCI [n=22] brain PET/MRI 69.6 +9.2 6/16 11.2+£2.9 -
HZUM Imaging Diagnostic Center
None [n=1475| whole-body PET/CT 59.7 + 14.2 807/668 - -
ADNI
NC [n=400] brain PET/MRI 73.6 £5.9 196/204 16.4£2.7 289+1.2
MCI [n=842] brain PET/MRI 728+£75 486/356 16.1+2.7 27.8+1.8
HS Hospital
NC [n=345] brain PET/MRI ~ 63.9+£7.7 119/216 12.3+3.1 28.0+1.6
MCI [n=143] brain PET/MRI 65.6 £6.8 57/86 11.24+3.0 26.2+1.9

Table 2. Performance for NC vs. MCI classification based on ZS data.

Method ACC SEN SPE F1i AUC

B 0.665 £ 0.098 | 0.603 & 0.097 | 0.708 4= 0.146 | 0.586 4= 0.088 | 0.754 4 0.051

BH 0.714 £0.041 | 0.653 £0.237 | 0.751 £ 0.119 | 0.616 £ 0.109 | 0.797 £ 0.062

BG 0.709 £0.121 | 0.647 £ 0.230 | 0.765 £ 0.217 | 0.625 £ 0.150 | 0.794 £ 0.101

BHG 0.744 £ 0.088 | 0.680 +0.217 | 0.793 = 0.075 | 0.659 &= 0.134 | 0.816 £ 0.071

BH guided| 0.703 £ 0.048 | 0.630 £ 0.159 | 0.753 £ 0.136 | 0.613 £ 0.049 | 0.789 + 0.063

BG guided| 0.690 = 0.064 | 0.620 £ 0.193 | 0.744 +0.085 | 0.597 £ 0.085 | 0.784 % 0.092
Ours |0.730 +0.063|0.657 £ 0.236(0.773 + 0.141|0.626 + 0.152|0.803 + 0.084

3.2 Performance of Proposed Method

To evaluate the effectiveness of our proposed framework, we explore its perfor-
mance under different input combinations and summarize the results in Table
The 1st to 4th rows in the table show the results of Stage II, which demonstrates
the impact of heart and gut on early AD diagnosis. It turns out that incorporating
heart and gut information enhances diagnostic performance. The 5th to 7th rows
analyze the guidance from different interactions for brain-only early AD diagnosis.
The results indicate that guidance from other organs can indeed improve the
brain-only model, and our model (guided by brain, heart, and gut) achieves
comparable performance as using whole-body PET (4th row).

3.3 Ablation Study

We conducted an ablation study to evaluate the impact of the key components
in our framework, with results presented in Table [3] First, removing CL in Stage
IT leads to a performance decline because CL aligns heart and gut features with
brain features, making them more disease-relevant and fusion-friendly. Second, in
Stage III, progressively removing each knowledge distillation constraint reduces
the model’s performance, indicating that both CL and multi-constraint knowledge
distillation are crucial in our framework.
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Table 3. Ablation study for NC vs. MCI classification based on ZS data.

Method ACC SEN SPE F1 AUC
Ours (w/o CL) | 0.704 +0.081 | 0.603 £ 0.232 | 0.766 £+ 0.101 | 0.586 + 0.177 | 0.776 & 0.085
Ours (w/o SCD)| 0.691 £+ 0.077 | 0.590 & 0.223 | 0.753 £ 0.135 | 0.570 £ 0.154 | 0.780 + 0.086
Ours (w/o GDD)| 0.705 £ 0.074 | 0.627 £ 0.239 | 0.752 4+ 0.251 | 0.609 & 0.072 | 0.789 £ 0.105
Ours (w/o RKD)| 0.717 £ 0.070 | 0.620 £ 0.220 | 0.768 = 0.104 | 0.611 4 0.130 | 0.794 £ 0.065
Ours 0.730 £+ 0.063|0.657 + 0.236|0.773 + 0.141|0.626 + 0.152|0.803 - 0.084

Table 4. Performance of representative methods for NC vs. MCI classification based
on ZS data.

Method ACC SEN SPE F1 AUC
ResNet-34 | 0.666 & 0.075 | 0.636 +0.214 | 0.673 £ 0.121 | 0.575 £ 0.144 | 0.750 £ 0.057
SNet 0.662 £ 0.096 | 0.543 £0.185 | 0.723 £0.162 | 0.541 £ 0.117 | 0.740 = 0.063
MiSePyNet| 0.650 £ 0.097 | 0.580 4 0.214 | 0.692 £ 0.265 | 0.554 & 0.046 | 0.769 £ 0.059
Ours [0.730 + 0.063|0.657 + 0.236(0.773 + 0.141|0.626 + 0.152|0.803 + 0.084

3.4 Comparison with Representative Brain-only Methods

To further evaluate our proposed method, we conducted quantitative comparison
with several existing representative AD diagnosis methods, including ResNet-
34 [5], SNet [23] and MiSePyNet [15]. For a fair comparison, all these methods
were developed using the same dataset, the same data splitting scheme, and
the same pretraining and finetuning stages. Quantitative results are provided
in Table[d] Our method achieves the best performance, with the improvement
primarily attributed to the additional guidance from the heart and gut. By
capturing a broader spectrum of disease-related information, our model offers a
more holistic perspective, leading to more accurate diagnostic outcomes.

3.5 Generalizability Study

To evaluate the generalizability of our framework, we applied few-shot learning
to the public ADNI dataset and the in-house HS Hospital and ZS Hospital.
Specifically, we selected 15, 10, and 5 samples per label from ADNI, HS Hospital,
and ZS Hospital, respectively. We assessed two variants: 1) finetuning the weights
of pretrained brain-only (B) model; 2) finetuning the weights of the pretrained
BHG-guided B model, and summarize the results in Fig. 2] Our findings demon-
strate that finetuning on BHG-guided model achieves the best performance across
all the datasets, highlighting the robust generalizability of our framework.

4 Conclusions

In this paper, we propose the first framework that effectively integrates brain,
heart, and gut information from whole-body PET images to guide brain-only
early AD diagnosis. Leveraging the proposed multi-organ alignment and fusion,
along with the multi-constraint knowledge distillation strategies, our BHG-guided
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Fig. 2. Generalizability study on three datasets.

brain-only model can achieve comparable diagnosis performance as using whole-
body PET images, which pushes the performance limit of early AD diagnosis
further by resorting to the learned interactions among brain, heart, and gut.

Acknowledgments. This work was supported in part by National Natural
Science Foundation of China (grant numbers U23A20295, 62131015, 62250710165,
82394432), the STT 2030-Major Projects (No. 2022ZD0209000), Shanghai Mu-
nicipal Central Guided Local Science and Technology Development Fund (grant
number YDZX20233100001001), The Key R&D Program of Guangdong Province,
China (grant number 2023B0303040001) and HPC Platform of ShanghaiTech
University.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Alavi, A., Saboury, B., Nardo, L., Zhang, V., Wang, M., Li, H., Raynor, W.Y.,
Werner, T.J., Hgilund-Carlsen, P.F., Revheim, M.E.: Potential and most relevant
applications of total body pet/ct imaging. Clinical nuclear medicine 47(1), 43-55
(2022)

2. Aramadaka, S., Mannam, R., Narayanan, R.S., Bansal, A., Yanamaladoddi, V.R.,
Sarvepalli, S.S.; Vemula, S.L.: Neuroimaging in alzheimer’s disease for early diagno-
sis: a comprehensive review. Cureus 15(5) (2023)

3. BETTER, M.A.: Alzheimer’s disease facts and figures. Alzheimer’s Dement 20,
3708-3821 (2024)

4. Fan, J., Cao, X., Wang, Q., Yap, P.T., Shen, D.: Adversarial learning for mono-or
multi-modal registration. Medical image analysis 58, 101545 (2019)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016)

6. He, K., Gan, C., Li, Z., Rekik, I., Yin, Z., Ji, W., Gao, Y., Wang, Q., Zhang, J.,
Shen, D.: Transformers in medical image analysis. Intelligent Medicine 3(1), 59-78
(2023)

7. Jack Jr, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey,
D., Borowski, B., Britson, P.J., L. Whitwell, J., Ward, C., et al.: The alzheimer’s



10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F. Li et al.

disease neuroimaging initiative (adni): Mri methods. Journal of Magnetic Resonance
Imaging: An Official Journal of the International Society for Magnetic Resonance
in Medicine 27(4), 685-691 (2008)

Jin, J., Xu, Z., Zhang, L., Zhang, C., Zhao, X., Mao, Y., Zhang, H., Liang, X., Wu,
J., Yang, Y., et al.: Gut-derived -amyloid: Likely a centerpiece of the gut—brain
axis contributing to alzheimer’s pathogenesis. Gut Microbes 15(1), 2167172 (2023)
Kleniuk, J., Edison, P.: Association of cardiovascular risk and sex with cortical tau
deposition in cognitively normal and at-risk alzheimer’s subjects: Neuroimaging/new
imaging methods. Alzheimer’s & Dementia 16, €046050 (2020)

Knopman, D.S.; Amieva, H., Petersen, R.C., Chételat, G., Holtzman, D.M., Hyman,
B.T., Nixon, R.A., Jones, D.T.: Alzheimer disease. Nature reviews Disease primers
7(1), 33 (2021)

Liu, M., Li, F., Yan, H., Wang, K., Ma, Y., Shen, L., Xu, M., Initiative, A.D.N.,
et al.: A multi-model deep convolutional neural network for automatic hippocampus
segmentation and classification in alzheimer’s disease. Neuroimage 208, 116459
(2020)

Liu, M., Zhang, D., Adeli, E., Shen, D.: Inherent structure-based multiview learning
with multitemplate feature representation for alzheimer’s disease diagnosis. IEEE
Transactions on Biomedical Engineering 63(7), 1473-1482 (2015)

Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C.R., Jagust,
W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: Ways toward an early diagno-
sis in alzheimer’s disease: the alzheimer’s disease neuroimaging initiative (adni).
Alzheimer’s & Dementia 1(1), 55-66 (2005)

Nichols, E., Steinmetz, J.D., Vollset, S.E., Fukutaki, K., Chalek, J., Abd-Allah, F.,
Abdoli, A., Abualhasan, A., Abu-Gharbieh, E., Akram, T.T., et al.: Estimation of
the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an
analysis for the global burden of disease study 2019. The Lancet Public Health
7(2), e105-e125 (2022)

Pan, X., Phan, T.L., Adel, M., Fossati, C., Gaidon, T., Wojak, J., Guedj, E.:
Multi-view separable pyramid network for ad prediction at mci stage by 18 f-fdg
brain pet imaging. IEEE Transactions on Medical Imaging 40(1), 81-92 (2020)
Petersen, R.C., Aisen, P.S., Beckett, L.A., Donohue, M.C., Gamst, A.C., Harvey,
D.J., Jack Jr, C., Jagust, W.J., Shaw, L.M., Toga, A.W., et al.: Alzheimer’s disease
neuroimaging initiative (adni) clinical characterization. Neurology 74(3), 201-209
(2010)

Song, R., Pan, K.Y., Xu, H., Qi, X., Buchman, A.S., Bennett, D.A., Xu, W.:
Association of cardiovascular risk burden with risk of dementia and brain pathologies:
a population-based cohort study. Alzheimer’s & Dementia 17(12), 1914-1922 (2021)
Stakos, D.A., Stamatelopoulos, K., Bampatsias, D., Sachse, M., Zormpas, E.,
Vlachogiannis, N.I., Tual-Chalot, S., Stellos, K.: The alzheimer’s disease amyloid-
beta hypothesis in cardiovascular aging and disease: Jacc focus seminar. Journal of
the American College of Cardiology 75(8), 952-967 (2020)

Sun, K., Zhang, Y., Liu, J., Yu, L., Zhou, Y., Xie, F., Guo, Q., Zhang, H., Wang,
Q., Shen, D.: Achieving multi-modal brain disease diagnosis performance using only
single-modal images through generative ai. Communications Engineering 3(1), 96
(2024)

Xiang, J., Tang, J., Kang, F., Ye, J., Cui, Y., Zhang, Z., Wang, J., Wu, S., Ye,
K.: Gut-induced alpha-synuclein and tau propagation initiate parkinson’s and
alzheimer’s disease co-pathology and behavior impairments. Neuron (2024)



21.

22.

23.

24.

Brain-Heart-Gut Guided Multi-Constraint Knowledge Distillation 11

Xue, C., Kowshik, S.S., Lteif, D., Puducheri, S., Jasodanand, V.H., Zhou, O.T.,
Walia, A.S., Guney, O.B., Zhang, J.D., Pham, S.T., et al.: Ai-based differential
diagnosis of dementia etiologies on multimodal data. Nature Medicine 30(10),
2977-2989 (2024)

Zhang, J., Zhang, Y., Wang, J., Xia, Y., Zhang, J., Chen, L.: Recent advances in
alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies.
Signal transduction and targeted therapy 9(1), 211 (2024)

Zhang, Y., Sun, K., Liu, Y., Shen, D.: Transformer-based multimodal fusion for
early diagnosis of alzheimer’s disease using structural mri and pet. In: 2023 IEEE
20th International Symposium on Biomedical Imaging (ISBI). pp. 1-5. IEEE (2023)
Zhang, Y., Sun, K., Liu, Y., Xie, F., Guo, Q., Shen, D.: A modality-flexible
framework for alzheimer’s disease diagnosis following clinical routine. IEEE Journal
of Biomedical and Health Informatics (2024)



	Brain-Heart-Gut Guided Multi-Constraint Knowledge Distillation for Early Alzheimer's Disease Diagnosis

