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Abstract. Traditional neural decoding methods are heavily based on
fully annotated brain data, which are both expensive to produce and
scarce in availability. This limitation hinders the development of accu-
rate and generalizable decoding models. Drawing inspiration from the
success of foundational Al models in reducing dependency on annotated
data in fields such as natural language processing, we introduce a novel
foundation model that leverages the inherent spatiotemporal covariation
of functional brain networks, which enables effective neural decoding with
minimal annotation requirements. Our framework incorporates three key
innovations: 1) A spatiotemporal importance-guided augmentation strat-
egy is designed to capture the synergistic relationships between brain re-
gions and their dynamic changes; 2) A progressive spatiotemporal-aware
encoder is proposed to learn local-to-global brain interaction informa-
tion; 3) A fine-grained consistency optimization technique is developed
to enhance the representations of overall brain function. Evaluations of
publicly available fMRI datasets demonstrate that our proposed frame-
work not only achieves superior decoding performance, but also exhibits
strong generalizability and reveals patterns of nervous activity. Our re-
search advances brain representation learning and provides an innovative
solution for universal neural decoding models.

Keywords: Neural decoding - Spatiotemporal - Self-supervised learning
- fMRI.

1 Introduction

Neural decoding involves the systematic analysis and interpretation of neural
activity patterns to infer brain states, cognitive processes, or behavioral in-
tentions. This technique has significant applications in the elucidation of brain
mechanisms, disease diagnosis, and the development of brain-inspired artificial
intelligence [4]. Functional magnetic resonance imaging (fMRI) has garnered
considerable attention in neural decoding due to its ability to capture coop-
erative relationships between regions of interest (ROIs) within the brain [2].
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Recently, Graph Neural Networks (GNNs) have gained widespread application
in fMRI-based neural decoding due to their robust capability to learn complex
contextual representations and provide interpretability [6][16]. However, the su-
perior performance of these models frequently depends on fully annotated fMRI
datasets, which require expert knowledge for precise labeling. This dependency
may undermine both the accuracy and generalizability of neural decoding mod-
els [11].

In contrast, graph foundation models leverage a substantial amount of unla-
beled data through pre-training and fine-tuning techniques to adapt to complex
graph tasks [9], thereby significantly reducing the cost of fMRI data annotation.
During pre-training, general semantic information is extracted via GNNs-based
self-supervised learning (GSSL), which facilitates downstream decoding tasks.
Among them, contrastive-based GSSL has gained attention for its simplicity
and efficiency [15], which predominantly focused on ROI connection analysis.
However, this narrow-focused approach has a glaring limitation: it completely
overlooks the crucial temporal dynamics within brain networks. Emerging re-
search has provided compelling evidence that the temporal dependencies be-
tween ROIs play a pivotal role in neural activities. By neglecting this aspect,
we are essentially missing out on a wealth of information that could potentially
revolutionize our understanding of brain functions [12, ?]. Numerous recent stud-
ies have shown that the incorporation of these temporal dependencies can lead
to a substantial leap in self-supervised decoding performance [10]. Therefore, a
novel graph foundation model for neural decoding is needed to fill this critical
gap, by integrating the ignored temporal dynamics. The main challenges arise:
i) How to design an efficient spatiotemporal representation extractor to cap-
ture more comprehensive and flexible brain representations, thereby improving
the accuracy and reliability of neural decoding? and ii) What are the appropri-
ate spatiotemporal augmented views for brain signals to provide a robust data
foundation and enhance the model’s capacity to interpret and analyze?

To address the aforementioned challenges, we propose an innovative Spa-
tioTemporal Pre-Training Foundation model (STPTF) for neural decoding based
on fMRI. STPTF employs spatiotemporal information of the brain, enabling
pre-training with unlabeled fMRI data. With only a small amount of labeled
fMRI data for fine-tuning, it can achieve substantial performance improvements
in downstream decoding tasks. Specifically, STPTF introduces three key in-
novations: i) Strategy innovation through SpatioTemporal Importance Guided
Augmentation (STIGA), STIGA comprises Spatial Centrality Augmentation
(SCA) and Temporal Continuity Augmentation (TCA), which facilitate the
model’s deep analysis of brain representations from both spatial and temporal
views; ii) Architectural innovation via Progressive SpatioTemporal-Aware en-
coder (PSTA), PSTA includes a simultaneously static and dynamic extractor, a
continuous brain state calibration module, and a progressive temporal aggrega-
tion module, which help the model to thoroughly analyze global spatiotemporal
features of brain activities; iii) Optimization innovation using Fine-Grained Con-
sistency Optimization (FGCO), FGCO can effectively mitigate the suboptimal
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representation problem caused by negative samples, which allows the model to
fully and accurately interpret brain signals. We evaluate our proposed model,
STPTF, on multiple medical imaging datasets, and the results demonstrate its
state-of-the-art performance. To the best of our knowledge, this study repre-
sents one of the first attempts to integrate graph foundation models with spatio-
temporal brain information, underscoring its significant potential in the field of
neural decoding.
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Fig. 1. (a) The overall framework of the proposed SpatioTemporal Pre-Training Foun-
dation model (STPTF) for neural decoding. (b) Progressive SpatioTemporal-Aware
encoder (PSTA).

2.1 Overall Framework

Implementing neural decoding based on our proposed STPTF is divided into
three stages (Fig. 1): pre-training a general spatiotemporal encoder with unla-
beled brain data, performing linear fine-tuning for various decoding tasks using
the pre-trained encoder, and subsequently decoding different brain states based
on the fine-tuned encoder. Specifically, STPTF integrates three core components
to enhance fMRI-based neural decoding: i) Strategy innovation through STIGA;
ii) Architectural innovation via PSTA (Fig. 1(b)); iii) Optimization innovation
using FGCO.
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2.2 SpatioTemporal Importance Guided Augmentation - STIGA

Spatial Centrality Augmentation - SCA Research shows that key ROIs,
which serve as hubs in brain networks, frequently engage in interactions with
other ROIs, thus facilitating neuronal communication and functional integra-
tion [5]. Based on these findings, we introduce SCA to generate an alternative
view. In graph theory, nodes with high centrality are considered critical hubs [1].
We select degree centrality as a straightforward yet effective measure of node
importance and adaptively assign masking probabilities according to the degree
centrality of each ROI. Specifically, hubs are allocated higher masking prob-
abilities, which aids in capturing the global semantic representation of brain
networks.

Temporal Continuity Augmentation - TCA Considering the typically con-
sistent ROI connections between adjacent timestamps and the concentration of
semantic information, there could be redundant temporal information, indicating
that changes in ROI connections exhibit continuity [13]. Based on this observa-
tion, we design the TCA for the other view. Specifically, we define the temporal
change rate as the displacements between consecutive timestamps across the
entire fMRI time series and adaptively assign mask probabilities according to
the change rate at each timestamp. Timestamps with higher change rates are
assigned greater mask probabilities, thereby compelling the model to learn the
global temporal representation of the brain network.

2.3 Progressive SpatioTemporal-Aware encoder - PSTA

First, we extract the spatial representation of the original fMRI time series
through a simultaneously static and dynamic extractor and then use GNN to cap-
ture the latent collaborative relationships among different ROIs. This approach
allows us to simultaneously derive both static and dynamic brain representa-
tions, thereby reflecting both the integrity and the time-varying characteristics
of the brain’s functional network. The static and dynamic representations are
complementary [8], and their joint learning provides a more comprehensive un-
derstanding of brain function. We incorporate automatic weight learning to cap-
ture the latent relationship between these two types of features, thus improving
the adaptability and robustness of the model.

ZSpatial = /Blzs + BZZda

Be = Qexp(iaC) ,cel,2 (1)
kZ exp(—ap)
=1

From a static perspective, we construct a static brain network by calculating
partial correlation coefficients between pairs of ROIs after excluding potential
confounding factors. We then employ GNNs to generate static representations
of the brain denoted as Z,. From a dynamic perspective, we adapt the adaptive
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brain topology learning module [7], previously proposed, to learn brain networks
that dynamically update with brain activities. By integrating GNN, the dynamic
representations Z; of the brain over time are automatically refined.

Assume that the original fMRI sequence is represented as X. For the learned
spatial representations (Zgpatiai) of the brain, we further explore their progres-
sive temporal representations. We introduce continuous brain state calibration
to address the long-range error estimation challenge faced by typical attention
mechanisms when establishing timestamp associations. Continuous brain state
calibration adaptively determines the extent of the brain state transition infor-
mation to be aggregated, without being constrained by the length of the fMRI
sequence. Consequently, it facilitates the extraction of more refined long-term
dependency information within the fMRI sequence and reveals contextual rela-
tionships of brain states within an appropriate temporal range.

Ztemporal = Conva(Convy (Zspatial) - CAM) + X,
CAM = Softmax(Convi ([CCM,TAWY])),

CCM = Softmax(ngatial - Zspatial)s

TAW = Softmaz(Convg(Zspatial) - Convi (Zspatial)”)

(2)

In order to improve the ability to model complex dynamic brain activities,
we further design a progressive temporal aggregation module, which divides the
temporal dimension of Ziepmporq: into multiple subsegments. By integrating at-
tention mechanism, progressive temporal aggregation computes the importance
score for each timestamp within each sub-segment and derives the global rep-
resentation of each sub-segment through weighted aggregation of these scores.
Subsequently, progressive temporal aggregation calculates the importance score
of each subsegment and progressively refines the global representation (Z4;) of
the entire sequence, therefore effectively captures temporal dependencies from
local to global levels.

2.4 Fine-Grained Consistency Optimization - FGCO

The spatially augmented view obtained through SCA is denoted as Xg, while
the temporally augmented view obtained through TCA is denoted as Xr. By in-
putting X, Xg, and X7 into PSTA, the spatiotemporal features of each view are
extracted. FGCO is designed to maximize the information correlation between
the original view and its spatially /temporally augmented views by utilizing the
cross-correlation matrix across different views. Specifically, this process is de-
scribed below.

Ltotal = LS + LT,

Ls=Y(1-C) +ad Y02,

S

LT:Z(l—C;t)2+aZZC;§
t t g
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This loss function encourages the augmented views to be closer to the original
views while simultaneously minimizing redundancy within each view, thereby
obtaining more informative and discriminative representations. The parameter «
is utilized to balance the trade-off between consistency and redundancy. Through
this optimization, a highly generalizable brain representation encoder named
PSTA is obtained. Additionally, a linear layer is incorporated to fine-tune the
entire network when applying it to downstream decoding tasks.

Table 1. Comparative Results (mean (std)). SM and SSM indicates graph supervised
methods and self-supervised methods, respectively.

Dataset| Type|Method  |Accuracy AUC Recall
Rest |SM |BrainGNN|66.60(3.63) [65.73(3.65) [80.17(6.60)
STGCN  |79.18(3.31) |78.55(2.68) [80.12(4.65)
SSM [BrainGSL [68.10(1.19) [69.02(2.34) |67.56(4.83)
GATE 65.93(2.26) [65.67(2.32) [68.63(2.25)
STPTF |83.37(1.77)|79.81(1.62)|77.81(3.75)
Task |SM |BrainGNN|69.23(2.10) [82.22(0.99) [69.57(1.65)
STGCN  [68.59(3.63) |73.82(3.08) [55.14(5.28)
SSM |BrainGSL [68.10(1.19) 69.02(2.34) [67.56(4.83)
GATE 66.09(2.18) [65.82(2.20) [68.97(2.35)
STPTF |89.62(0.29)/90.62(0.35)|83.02(0.75)

3 Experiments

3.1 Data Description and Implementation Details

The experimental data was from the publicly available fMRI dataset, Human
Connectome Project (HCP). The resting state data from 1091 subjects and the
task state data from 1007 subjects who participated fully in seven cognitive tasks
are utilized to evaluate the effectiveness of STPTF. Despite originating from the
same source, they represent distinct paradigms and cognitive states, providing
a diverse evaluation. Specifically, the resting-state data examine gender differ-
ences in brain states, while the task-state data investigate variations in brain
states across different cognitive tasks. To address computational complexity and
information fitting challenges, we segment the entire brain into 22 major regions.
These regions are derived by merging finer subdivisions from the existing brain
atlas as [3].

We utilize a five-fold cross-validation to ensure the reliability of the decoding
performance. Classification accuracy, area under the curve (AUC), and recall
were used to evaluate decoding performance. In addition, a warm-up stage is
incorporated into the training process to enhance stability. The learning rate
begins at a small initial value, gradually increases to its maximum as training
progresses, and subsequently follows a cosine decay schedule, leading to a gradual
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decrease along a cosine curve. Compared with step decay, cosine decay offers a
smoother adjustment, which can accelerate convergence and improve decoding

performance.

Table 2. Ablation Results (mean (std)).

Dataset|Type |Method Accuracy AUC Recall
Rest |STIGA|RSA + RTA([82.51(1.31) |79.50(1.29) |76.91(4.42)
w/o / TCA [81.18(1.41) |78.29(1.14) |68.41(4.44)
w/o / SCA [81.61(1.75) |79.17(2.02) |76.31(2.75)
PSTA |GCN 58.62(2.02) |56.37(2.38) [39.46(4.90)
LSTM 77.73(1.69) |75.61(0.15) |75.03(4.78)
STGCN  [77.14(3.81) |75.06(4.99) |73.91(5.54)
STPTF  (83.37(1.77)|79.81(1.62)|77.81(3.75)
Task |STIGA|RSA + RTA[89.15(0.44) [90.18(0.24) [82.39(0.45)
w/o / TAM [89.17(3.57) (90.15(0.22) [82.29(0.32)
w/o / SCM [89.25(0.50) (90.15(0.79) |82.85(0.60)
PSTA |GCN 61.63(0.60) |72.73(0.34) |52.38(0.65)
LSTM 88.93(0.28) [89.38(0.45) [81.34(0.28)
STGCN  [80.09(0.83) |80.22(0.69) [64.93(1.92)
STPTF  (89.62(0.29)(90.62(0.35)|83.02(0.75)

3.2 Comparative Results

To assess the advancement of the proposed model, we conduct a comparative
analysis against several state-of-the-art graph supervised methods: including
BrainGNN [6] and STGCN |[3], which share the same goal as our work. They
specialize in spatial and spatiotemporal brain representation mining, respec-
tively; graph self-supervised methods based on brain spatial pattern, namely
BrainGSL[14] and GATE [12]. BrainGSL is a representative example of the
generative-based approach to the diagnosis of brain diseases. GATE is one of
the pioneering contrastive-based methods for disease diagnosis. Table 1 illus-
trates the decoding performance of STPTF in two datasets. It is evident that
most graph self-supervised methods exhibit a substantial performance gap com-
pared to spatiotemporal supervised methods. Nevertheless, the proposed STPTF
demonstrates comparable, and in some cases superior, decoding capabilities rel-
ative to state-of-the-art supervised spatio-temporal decoding methods. More-
over, STPTF significantly outperforms existing graph self-supervised decoding
approaches, it may stem from the neglect of temporal dynamics and the lim-
itations inherent in the backbone (GNNs), which restrict the effectiveness of
existing graph self-supervised methods.
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Table 3. The robustness results under different sample sizes (mean (std), %).

Rest Task

Accuracy AUC Recall Accuracy AUC Recall
71.71(6.24)(86.81(0.16) 88.18(0.32) 78.92(0.55)
69.95(2.08)[88.90(0.10) 90.48(0.09) 82.92(0.15)
72.70(2.07)|88.43(0.11) 90.12(0.14) 82.28(0.24)
77.81(3.75)(89.62(0.29) 90.62(0.35) 83.02(0.75)

%
20(78.45(0.84) 74.42(1.79
40(81.41(1.04) 77.81(0.57
60|81.27(0.37) 78.51(1.03
80|83.37(1.77) 79.81(1.62

=)

_— T
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3.3 Ablation Results

To further validate the effectiveness of our STPTF, we perform comprehensive
ablation experiments on the proposed modules, including STIGA and PSTA.
For STIGA, we replace the proposed spatial and temporal augmented strategies
(SCA and TCA) with random spatial and temporal augmention (RSA and RTA).
For PSTA, we replace it with only spatial encoders and traditional spatiotempo-
ral encoders. Quantitative results (Table 2) show that STIGA and PSTA have
the ability to effectively guide the model to focus on key information, map fea-
tures to a more general representation space, and thus enhance the performance
of downstream decoding tasks. It should be noted that, although the improve-
ments brought about by STIGA may seem modest, they demonstrate consistency
across various metrics and datasets, highlighting the robustness of STIGA. Fur-
thermore, even minor improvements can bring it closer to practical application
scenarios.

3.4 Robustness and Transferability

Robustness Considering that the ultimate goal of STPTF is to facilitate its
application to different downstream decoding tasks and achieve efficient decoding
even with a small amount of labeled fMRI data, we perform multiple experiments
to fine-tune the sample size. The results show that even with a small sample size
(20%), STPTF achieves better results than previous GSSL-based brain decoding
methods and is comparable to supervised methods (Table 3).

Transferability Current GSSL decoding algorithms are intra-domain, mean-
ing that pre-training and fine-tuning are based on the same dataset. To validate
that the proposed STPTF has strong transferability and adapts well to differ-
ent downstream decoding tasks, we further explore its performance in inter-
domain scenarios. For example, we pre-train on task-related data and then fine-
tune for resting-state data decoding, and vice versa. The results (Table 4) show
that STPTF still achieves good performance when transferring between differ-
ent datasets, similar to intra-domain results. This indicates that STPTF can
precisely extract generalizable knowledge from pre-trained datasets.
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Table 4. The transferability results on different fMRI sequence length, Task — Rest
represents training on task-related data while fine-tuning on resting data, and vice
versa (mean (std)).

Task—Rest Rest—Task
Accuracy AUC Recall Accuracy AUC Recall
83.37(1.86) 80.01(1.45) 77.72(4.88)|88.18(0.49) 88.42(0.40) 79.40(0.63)

4 Conclusion

In this study, we introduce an innovative fine-grained spatio-temporal pre-training
and decoding framework (STPTF) based on GSSL. This framework offers a novel
technical approach to gain deeper insights into the mechanisms of brain state
transitions. Specifically, STPTF can learn universal representations of brain
states from unlabeled data by leveraging STIGA strategy, PSTA miner, and
multi-view FGCO. Experimental results in multiple public datasets demonstrate
that STPTF achieves significant improvements in unsupervised brain decoding,
likely due to its incorporation of self-supervised temporal information. Further-
more, STPTEF’s effectiveness in downstream decoding tasks with limited data
and across different datasets highlights its robustness and transferability. With
broader data-sharing initiatives, STPTF has the potential to be applied to larger
and more diverse decoding datasets, further validating its generalization capa-
bilities.
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