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Abstract. The detection of tumor budding on histopathological images
provides vital information for treatment planning and prognosis predic-
tion. As manual identification of tumor budding is labor-intensive, auto-
mated tumor budding detection is desired. However, unlike other tumor
cell detection tasks, tumor budding involves clusters of multiple tumor
cells, which is more likely to be confused with other clusters of cells with
similar appearances. It becomes challenging for existing cell detection
methods to discriminate tumor budding from other cells. Additionally,
the lack of public datasets for tumor budding detection hinders further
development of accurate tumor budding detection methods. To address
these challenges, to the best of our knowledge, we introduce the first
publicly available benchmark dataset for tumor budding detection. The
dataset consists of 410 images with H&E staining and the corresponding
bounding box annotations of 3,968 cases of tumor budding made by ex-
perts. Moreover, based on this dataset, we propose a designated approach
Tumor Budding Detection Network (TBDNet) for tumor budding detec-
tion with improved detection performance. On top of standard objection
detection backbones, we develop two major components in TBDNet, Iter-
atively Distilled Annotation Relocation (IDAR) and Rotational Feature
Decoupling And Recoupling (RFDAR). First, as different experts have
different standards for budding boundaries in the annotation, the detec-
tion model may receive inconsistent knowledge during model training.
Therefore, we introduce the IDAR module that implicitly standardizes
the annotations. IDAR relocates the annotations via iterative model dis-
tillation so that the relocated annotations are consistent for training the
detection model. Second, to reduce the interference from cells with simi-
lar features, i.e., negative samples, to tumor budding, i.e., positive sam-
ples, we develop the RFDAR module. RFDAR enhances feature extrac-
tion via positive-negative feature coupling regularized by prior feature
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distributions, so that it is better capable of distinguishing tumor budding.
The results on the benchmark show that our approach outperforms state-
of-the-art detection methods by a noticeable margin. All code and data
are available at https://github.com/J-F-AN/TumorBuddingDetection| .

Keywords: tumor budding detection - computational pathology - bench-
mark dataset.

1 Introduction

Tumor budding refers to the phenomenon where tumor cells detach from the
main tumor mass and infiltrate surrounding tissues in small clusters [6]. It has
been identified as a key indicator of tumor invasiveness and metastatic potential.
The accurate quantification of tumor budding can inform effective treatment,
which prolongs patient survival and improves treatment outcome [17]. Tradi-
tional quantitative analysis of tumor budding relies on manual detection by
pathologists in pathological images, a labor-intensive process. Therefore, there
is a pressing need for automated tumor budding detection. Although tumor bud-
ding detection has not been extensively studied before, it can be formulated as an
object detection problem. With the development of object detection technologies
based on deep learning (DL) [12}13,20], DL detection models, including generic
ones [10}/11}|18}/19,[23] or those designed for tumor cell detection [1}/2,[16], can
be applied to tumor budding detection. For example, Bokhorst et al. [2]| use a
general DL detection model to automatically detect tumor budding in colorectal
cancer. Their subsequent work |[I] trains the network using a semi-supervised
approach, which further improves detection accuracy under data-limited condi-
tions. Piansaddhayanaon et al. |16] propose a module for tumor cell detection
aimed at enhancing the performance of existing two-stage detection frameworks,
and it can be used for budding detection as well. However, tumor budding de-
tection is generally more challenging than other tumor cell detection tasks, as
budding typically presents as clusters of tumor cells, which are prone to be-
ing mistaken for other cells or cell clusters with similar morphological charac-
teristics. Therefore, direct application of existing detection methods to tumor
budding only achieves suboptimal performance. Moreover, there is currently no
publicly available dataset for tumor budding detection, which further hinders
the development of accurate budding detection methods.

To address these challenges, we introduce the first publicly available bench-
mark for tumor budding detection, and it is named Tumor Budding Detection
Dataset (TBDD). TBDD contains 410 images with H&E staining and 3,968 an-
notated cases of tumor budding in the form of bounding boxes. Based on this
benchmark dataset, we also propose Tumor Budding Detection Network (TBD-
Net), which is a designated approach to tumor budding detection with improved
detection performance. There are two major contributions, Iteratively Distilled
Annotation Relocation (IDAR) and Rotational Feature Decoupling And Recou-
pling (RFDAR) in TBDNet. First, due to the irregular shape of tumor budding,
experts tend to have different standards when determining budding boundaries


https://github.com/J-F-AN/TumorBuddingDetection

Tumor Budding Detection 3

for annotation. Such a discrepancy can lead to inconsistent knowledge learning
during model training, which adversely affects the detection performance. To
tackle this issue, we introduce IDAR that implicitly standardizes the bounding
box annotations. IDAR uses a teacher-student framework to relocate the boxes,
and with iterative model distillation the final student model produces consis-
tently relocated annotations for subsequent model training. Second, to better
distinguish between tumor budding, i.e., positive samples, and non-budding tar-
gets, i.e., negative samples, with similar features, RFDAR enhances the feature
extraction by decoupling and recoupling the features of positive and negative
samples, under the regularization of prior feature distributions. Such positive-
negative feature coupling encourages the model to focus on the discriminative
features for distinguishing tumor budding and non-budding targets. Qualitative
and quantitative evaluation results on the benchmark dataset TBDD show that
TBDNet outperforms existing detection methods.

2 Method

The contribution of this work is summarized in Fig. [I} which gives an overview
of the data curation for TBDD and the proposed TBDNet. Their detailed de-
scriptions are given below.

2.1 Dataset Curation for Tumor Budding Detection

TBDD was collected for colorectal cancer patients, as colorectal cancer is a lead-
ing cause of cancer-related morbidity and mortality |22]. Histopathology images
were acquired for 410 patients over two years on a KFBIO KF-PRO-400-HI scan-
ner. The samples were processed, sectioned, and stained with H&E; then they
were examined with 40x magnification to capture clear, high-resolution whole
slide images. For each patient, only an 800x800 patch with tumor budding that
is clinically informative was cropped from the whole slide image and annotated.
Three experienced pathologists annotated tumor budding areas on the 800x800
images with bounding boxes, each handling a disjoint subset of the images, and
all annotations were cross-reviewed according to the criteria of the International
Tumor Budding Consensus Conference (ITBCC) to ensure consistency. The re-
leased dataset contains both the cropped images and their annotations.

2.2 TIteratively Distilled Annotation Relocation

As tumor budding typically has variable shapes depending on the composition of
tumor cells, different experts can determine the sizes and locations of annotation
bounding boxes with different standards [9]. This annotation inconsistency hin-
ders effective training of detection models [21]. To address this issue, we propose
the IDAR method, which gradually relocates the annotation through iterative
knowledge distillation |7] and produces consistent standardized bounding boxes
better suited for model learning.
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Fig.1. An overview of the proposed work. First, we introduce a benchmark dataset
TBDD for tumor budding detection. Then, we develop TBDNet for tumor budding
detection based on TBDD. TBDNet comprises two major components, IDAR and RF-
DAR. IDAR implicitly standardizes the annotation to avoid inconsistent knowledge
learning, whereas RFDAR uses positive-negative feature coupling to enhance the ex-
traction of discriminative features for distinguishing tumor budding from other targets.

In IDAR, we first train a teacher model with the manually annotated data.
The bounding boxes generated by the teacher model are then used as soft labels
to train the student model. In the next iteration, the student model serves as
the new teacher model to train a new student model. With the iterative distil-
lation, the size and location of the bounding boxes stabilize, which implicitly
achieves standardized annotation that both conforms to the original annotation
and becomes consistent across samples. Notably, during each iteration, when
generating soft-label bounding boxes, to ensure all annotated budding cases are
preserved, the teacher model predicts with a low confidence threshold of 0.05.
As false positives may be produced with the low threshold, the teacher outputs
are then filtered based on the manual annotations with an Intersection over
Union (IoU) threshold of 0.2.
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2.3 Rotational Feature Decoupling and Recoupling

Then, we train the detection model with the standardized annotation. The tumor
budding cell clusters can be visually similar to other cell clusters, where their
cytoplasm has similar appearances and their nucleus appearances are different.
Such subtle differences can be difficult to learn for existing detection frameworks.
Therefore, we design REFDAR to address the issue.

Our method is based on a standard object detection backbone. Here, we
choose YOLOV5 [10] due to its ease of deployment and high performance, but
other backbones are also applicable. RFDAR uses a contrastive learning strat-
egy by adding a contrastive head to YOLOvS5 [10] (see Fig. [1)), which encourages
discrimination between the positive samples of tumor budding and the nega-
tive samples of similar non-tumor-budding cell clusters. However, the features
extracted by the backbone network contain both discriminative ones and those
that are shared between tumor budding and other cell clusters. This is possibly
because the nucleus components are different and the cytoplasm components
are similar between positive and negative samples, and naive training of the de-
tection model cannot optimally preserve the discriminative features. Therefore,
in conventional contrastive learning, the separation of discriminative features of
positive and negative samples is hindered by the shared features.

To address this problem, RFDAR secks to decompose the features into dis-
criminative ones and shared ones, and the decomposition is learned by coupling
the features of positive and negative samples. Then, only the discriminative
features are used in contrastive learning to better distinguish positive and nega-
tive samples. Specifically, during model training the backbone features are first
categorized as features of positive samples and negative samples based on the
annotation. As shown in Fig. [1} both positive and negative features are fed into
an encoder of discriminative features and an encoder of shared features for fea-
ture decoupling. The shared features are then rotated between the positive and
negative samples, i.e., the positive shared features are recoupled with the nega-
tive discriminative features and the negative shared features are recoupled with
the positive discriminative features. Since the shared features are similar between
positive and negative samples, the original features should be reconstructed from
the recoupled features.

1

1 2
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Therefore, by minimizing a reconstruction loss L. measured by the mean
squared error of the positive and negative features, RFDAR learns how to de-
compose the raw features into discriminative and shared ones.

To avoid degeneration and improve the stability of the decoupling, we intro-
duce additional regularization for training RFDAR based on the prior feature
distributions. Specifically, from the raw features, we fit the distributions of pos-
itive and negative features with a Gaussian mizture model (GMM) [4]. As the
raw features are high-dimensional, before model fitting we apply principal com-
ponent analysis (PCA) [§] to the features for dimensionality reduction. Then,
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the first principal component that best reflects the major variation in the sam-
ples is used for fitting the GMM. We assume that the GMM comprises three
components, the discriminative features of positive samples, the discriminative
features of negative samples, and the shared features of the positive and nega-
tive samples. With the three distributions, the Kullback-Leibler (KL) divergence
loss Lk1, is computed as regularization for the discriminative feature of positive
samples, the discriminative feature of negative samples, and the shared feature
with respect to their corresponding prior distributions (see Fig. [1)).

The encoders of discriminative and shared features are trained by minimizing
the sum of L. and Lkr, with the other network parameters fixed.

Finally, with the trained RFDAR module (frozen), we perform the training
of the detection model aided by contrastive learning. Specifically, the standard
detection loss Lget of YOLOVS [10] is combined with the following contrastive
loss motivated by [3] and [25]:

N
Lo = [0 @)+ Gmaxoum— )] 2

where y; denotes the label disagreement (y; = 0 for two samples of the budding
class and y; = 1 for samples of different classes) of the i-th sample pair, d; repre-
sents the Euclidean distance between the sample pair, IV is the total number of
sample pairs, and m is a predefined hyperparameter representing the maximum
valid distance between inter-class pairs. Note that the features are normalized
by their L2 norm before computing d;, and we set m = 1.2 based on experiments
on a validation set [5,24]. Then, the total loss is

Etotal = Ldet +A- Econa (3)

where A is a balancing hyperparameter set to 1.5 based on the validation set.

2.4 Implementation Details

Both teacher and student models in IDAR use the YOLOvV5 detector as the back-
bone, with the iteration count empirically fixed to two based on experimental
tuning. Each encoder in RFDAR comprises two fully connected layers. It maps
the input to a 256-dimensional space with ReLU activation [15], followed by two
parallel linear layers that generate the mean and log variance with a dimension
of 128. The decoder in RFDAR also comprises two fully connected layers, where
the first layer has a channel width of 256 with ReLU activation and the sec-
ond one projects the output of the first layer back to the original feature space.
The contrastive head uses the encoder trained in RFDAR for computing the
contrastive loss. All these auxiliary modules are employed solely during train-
ing, and at inference time the model collapses to the vanilla YOLOv5 detector,
incurring no additional parameters or latency.

Model training is performed with the default settings of YOLOvV5 [10] when
applicable. The images are cropped into 384 x384 patches with an overlap of 128
pixels in each dimension as model input. The predictions on the input patches
are merged for test images.



Tumor Budding Detection 7

Table 1. Detection performance of different methods on TBDD. The best results are
highlighted in bold.

Category Method F1(%)1t P% 1T R %)1T
Faster R-CNN (2016) [18] 59.11 60.61 57.69
%jfiﬁ:g RetinaNet (2017) [19] 58.06 55.75 60.58
ReCasNet (2023) |16 53.26 56.98 49.99
CNN-based YOLO11 (2024) [11] 57.07 58.97 55.29
(one-stage) MambaYOLO (2024) [23]  56.46 58.80 54.30
Transformer-based SwinT (2021) |14] 40.48 45.11 36.71
) Deformable DETR (2021) [26]  45.37 41.67 49.79
Ours TBDNet 63.29 63.59 62.98

3 Experiments

3.1 Experimental Setup and Detection Performance

The 410 images in TBDD were split into a training set of 276 images, a validation
set of 94 images, and a test set of 40 images. We compared TBDNet with several
representative object detection methods, including CNN-based two-stage detec-
tors Faster R-CNN [18], RetinaNet [19]|, and ReCasNet [16], CNN-based one-
stage detectors YOLO11 [11] and MambaYOLO 23|, and Transformer-based
approaches Deformable DETR [26] and SwinT [14]. All these methods applied
their default settings and used the same experimental settings as TBDNet for
fair comparison.

The detection performance was quantitatively evaluated with the F1-score (F1),
precision (P), and recall (R). The results are presented in Table |1} TBDNet
achieves better performance than all competing methods. The CNN-based two-
stage detectors tend to perform better among the competing methods. Compared
with the second best method Faster R-CNN, TBDNet improves the F1-score by
4.18%. Note that our method is based on YOLOv5, and it outperforms (by
over 6%) more recent versions of YOLO detectors, YOLO11 and MambaYOLO,
whereas the baseline YOLOvV5 has similar performance to the two competitors
(see the ablation study later in Table .

Visualization examples of the detection results are shown in Fig.[2] Compared
with the competing methods, TBDNet produces more true positive and fewer
false positive budding detection results. This observation agrees with the better
precision and recall values of TBDNet in Table [T}

3.2 Ablation Study

To further validate the effectiveness of each module in our method, we performed
an ablation study. The results are shown in Table [2 First, compared to the
YOLOvV5 baseline model, one iteration of IDAR improves the Fl-score, and it is
further increased after the second iteration. This confirms the benefit of IDAR.
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ReCasNet

Fig. 2. Visualization examples of detection results. The green box is the output of the
model, and the red box is the annotation.

Table 2. Ablation study with different configurations. The baseline uses YOLOVS5.
Tter represents the number of iterations in IDAR. C-Head represents the use of the
contrastive head. The best results are highlighted in bold.

Baseline  Iter C-Head Ly Lk F1 (%)t P(%)1T R (%) 1

v - - - - 57.42 59.18 55.77
v 1 - - - 58.63 57.67 59.62
v 2 - - - 60.77 60.48 61.06
v v - - 61.23 62.94 59.62
v v v - 59.36 56.52 62.50
v v - v 57.00 57.28 56.73
v 2 v v v 63.29 63.59 62.98

Second, the contrastive head itself improves the Fl-score after the application
of IDAR. When the full RFDAR is also applied (with both L. and Lkr.),
the best performance is achieved, which shows the benefit of RFDAR. Note
that if only L. or Lxr, is used in RFDAR, the results are worse than the
use of the contrastive head, because Lo, mainly increases recall by encouraging
the detection of positive cases, while Lki, tightens the posterior distribution to
improve precision. Using either loss alone therefore fails to balance sensitivity
and specificity.
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4 Conclusion

We have curated and released a tumor budding detection dataset TBDD and
proposed TBDNet for better performance of tumor budding detection. TBDD
comprises 410 H&E images with 3,968 cases of annotated tumor budding. In
TBDNet, we have made two major contributions IDAR and RFDAR. IDAR
implicitly standardizes the annotation by relocating the annotation bounding
boxes via iterative model distillation. This avoids knowledge inconsistency dur-
ing model training due to the different standards of different experts for budding
boundaries. REDAR better distinguishes tumor budding from other similar cells
or cell clusters by extracting more discriminative features via positive-negative
feature coupling. Experimental results show that TBDNet outperforms exist-
ing methods for the challenging tumor budding detection task by a noticeable
margin.
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