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Abstract. Accurate segmentation of lung infection regions is critical for
early diagnosis and quantitative assessment of disease severity. However,
existing segmentation methods largely depend on high-quality, manu-
ally annotated data. Although some approaches have attempted to al-
leviate the reliance on detailed annotations by leveraging radiology re-
ports, their complex model architectures often hinder practical training
and widespread clinical deployment. With the advent of large-scale pre-
trained foundation models, efficient and lightweight segmentation frame-
works have become feasible. In this work, we propose a novel segmenta-
tion framework that utilizes CLIP to generate multimodal high-quality
prompts, including coarse mask, point, and text prompts, which are sub-
sequently fed into the Segment Anything Model 2 (SAM2) to produce
the final segmentation results. To fully exploit the informative content
of medical reports, we introduce a localization loss that extracts posi-
tional cues from the text to guide the model in localizing potential lesion
regions. Experiments on the CT dataset MosMedData+ and the X-ray
dataset QaTa-COV19 demonstrate that our method achieves state-of-
the-art performance while requiring only minimal parameter fine-tuning.
These results highlight the effectiveness and clinical potential for pul-
monary infection segmentation.

Keywords: Medical Image Segmentation · Vision-language Model · Trans-
fer Learning.

1 Introduction

Lung diseases pose a significant global health challenge, with radiological imaging
such as X-ray and Computed Tomography (CT) playing a crucial role in early de-
tection, especially during outbreaks like COVID-19 [8,19,4]. While convolutional
neural network (CNN) [10,1] and Transformer [6,3] based segmentation methods
have advanced the field, their dependence on extensive pixel-level annotations
limits scalability. Reducing annotation needs without sacrificing segmentation
accuracy remains a critical challenge [11,13,15,20,23].

To tackle this issue, several recent studies have begun exploring textual in-
formation to guide segmentation, and existing multimodal methods for medical
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imaging predominantly mimic multimodal approaches from the natural image
domain [24]. For example, Li et al. [14] proposed LViT, the first method to in-
tegrate CNN and Transformer architectures for text-guided segmentation. Sim-
ilarly, GuideDecoder [26] performs multimodal fusion at the decoder stage, and
MMI-UNet [2] applies multimodal fusion in the encoder stage. TGANet [21] pro-
poses a text-guided attention mechanism for polyp segmentation. MTPTN [9]
introduces progressive text-based prior prompts to generate multimodal features
for nuclei segmentation.

On the other hand, existing methods have not considered that medical re-
ports differ from the textual descriptions associated with natural images. They
usually contain various localization terms. As illustrated by the blue text in Fig.
1, this information concisely describes the location of the lesion area. However,
current existing approaches heavily rely on attention mechanisms to align the
text with the visual modality and extract additional information from the text.
Such reliance fails to explicitly capture effective medical cues (e.g., localization
information), making it challenging to guide the visual modality in lesion lo-
calization accurately. To address this limitation, we propose a location-aware
method that employs a global positional feature classification (GPFC) loss to
guide the visual modality in accurately localizing lesion regions. By using lesion
localization classification as a loss function, we validate whether the model has
successfully learned localization cues from the text. Additionally, incorporating
such classification at multiple stages further ensures that the text-image encoders
can extract effective global features, thereby generating high-quality prompts.

In addition, large-scale pre-trained models have shifted segmentation toward
efficient fine-tuning. Foundation models like CLIP [17] and the recent release of
SAM2 [18] have further advanced this direction. Although SAM2, an extension of
SAM [12] with a larger training dataset and faster performance, offers promising
results, it still requires high-quality prompts to avoid segmentation errors [22].
Therefore, it remains challenging to effectively adapt SAM2 to downstream tasks.
In this work, we leverage CLIP to generate the prompts required by SAM2 while
freezing the text and image encoder and fine-tuning only the bridging module
during encoding. To fully exploit CLIP’s multimodal capabilities, we introduce
a Query-guided Attention Fusion (QGAF) module, which differs from previous
approaches that rely on simple attention fusion. The QGAF module acts as
a bridge between CLIP’s text and image encoders, using learnable query to-
kens to extract lesion location information from text, enabling CLIP to generate
high-quality prompts that meet SAM2’s requirements. Our method reduces the
burden of pixel-level annotation by leveraging available medical report text.

In summary: (1) We propose a text-guided, location-aware segmentation
framework that uses global positional feature classification (GPFC) to precisely
localize lesions from positional cues in medical reports. (2) We design a Query-
guided Attention Fusion (QGAF) module for fine-tuning CLIP to generate three
effective prompts (coarse mask, point, and text) for SAM2. (3) Experimental re-
sults on the MosMedData+ [16] and QaTa-COV19 [7] datasets demonstrate our
model achieves state-of-the-art performance with minimal parameter fine-tuning.
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Fig. 1: An overview of our proposed framework, highlighting that only minimal
parameter fine-tuning is required. The details of Query-guided Attention Fusion
(QGAF) module are shown in Fig. 2.

2 Methodology

Figure 1 shows an overview of our proposed method. Given an image I and a
medical report T , we employ CLIP as the encoder and use the QGAF module
to fuse multimodal information for extracting image features FC

v (Section 2.1).
After that, we generate the coarse mask prompt, point prompt, and text prompt
required by SAM2. The SAM2 prompt encoder then processes these prompts to
obtain the corresponding encodings Em, Ep, and Et (Section 2.2). The SAM2
mask decoder subsequently produces the final segmentation mask S (Section
2.3). The whole process is trained using a combination of location-aware loss
and segmentation loss (Section 2.4). All encoders remain frozen during training.

2.1 Text and Image Encoder

Given an image I ∈ RH×W×3, we extract image features FC
v ∈ RN×Ci using the

CXR-CLIP image encoder EC
I . The corresponding medical report T is processed

by the CXR-CLIP text encoder EC
T to obtain text features Ft ∈ RL×Ct . CXR-

CLIP [25] is a pretrained model on relevant medical datasets based on CLIP.
We utilize the MedSAM2 image encoder ES

I to extract image features FS
v ∈

RN×Ci for final segmentation. MedSAM2 [28] is a pretrained model by fine-
tuning SAM2 on several medical datasets. Here, Ci and Ct denote the dimensions
of the extracted image and text features respectively, N denotes the number of
image patches, L signifies the length (i.e., the number of tokens) of the text
description. Throughout the process, we partition the CXR-CLIP image-text
encoder into four stages based on its blocks. After each stage, the QGAF module
is applied for fine-tuning while all encoders remain frozen.
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Fig. 2: Overview of the proposed module: the left side shows the Query-guided
Attention Fusion (QGAF) module, while the right side presents the Global Po-
sitional Feature Classification (GPFC) component in QGAF.

Query-guided Attention Fusion Module As shown in Figure 2, during the
image encoding stage, we fuse textual information using the QGAF bridging
module to learn localization knowledge for lesion regions. Unlike previous meth-
ods that rely on simple attention mechanisms, we employ a learnable query token
Q ∈ RT×Ct (T is the token length) and concatenate it with the text feature Ft.
To save memory and improve efficiency, we apply a zoom-in operation to reduce
the feature dimension to Cf = 64, then perform multimodal fusion through
self-attention and cross-attention mechanisms, and finally restore the original
dimension with a zoom-out operation. The process is formulated as follows:

F ′
t = Ft +MHCA(MHSA([Q,Ft]),MHSA(FC

v)), (1)

F ′C
v = FC

v +MHCA(MHSA(FC
v),MHSA([Q,Ft])). (2)

where, [·] denotes concatenation. For simplicity, the zoom-in and zoom-out oper-
ations are not shown in the equations; they are implemented via a feed-forward
network (FFN) that reduces and then restores the feature dimension; MHCA is
the multihead cross-attn. We describe the GPFC component in Section 2.4.

2.2 Prompt Generation

Coarse Mask Prompt After four encoder stages, we obtain the final image
feature FC

v and text feature Ft. We use the end-of-sequence token Ft[EOS] ∈
R1×Ct as the global text feature. Next, we reshape FC

v into hi × wi × Ci and
perform element-wise multiplication with the global text feature to generate
the pseudo mask M ∈ Rhi×wi×1: M = Ft[EOS] ⊙ FC

v. This approach, based
on contrastive learning, computes the similarity score between the global text
feature and each image pixel feature. A higher similarity score indicates a greater
likelihood that the pixel belongs to a lesion region.
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Point Prompt Our point prompts are generated from the coarse mask. From
the coarse mask M , we derive probability values for each of the hi × wi points
indicating the likelihood of belonging to a lesion area. We then select the Top-
k points as point prompts. First, candidate points with a probability above a
threshold (θ > 0.9) are identified. The first point is chosen as the candidate with
the highest likelihood and is added to the set of selected points P. Subsequent
points are determined based on the criterion Dismax(p,P), where point p is se-
lected if it is the farthest from the already selected points. This approach ensures
that the chosen points are not only highly probable but also well distributed,
covering various lesion regions rather than clustering in a single area.

Text Prompt We use the end-of-sequence text token Ft[EOS] ∈ R1×Ct from the
final text encoder layer as the global information. Then a simple feed-forward
network (FFN) process is performed to generate the text prompt.

2.3 Mask Decoder

The three types of prompts are encoded by the MedSAM2 prompt encoder to
obtain the coarse mask Em, point prompt Ep, and text prompt Et. The SAM2
image encoder extracts the image features FS

v , which, combined with Em and
the other prompts, are fed into the MedSAM2 mask decoder to yield the final
segmentation S. The overall process is expressed as:

S = SAM2Dec(F
S
v + Em, [Ep, Et]). (3)

2.4 Loss Design

Global Positional Feature Classification Component The proposed GPFC
component (Fig. 2, right) classifies global positions by partitioning the lung
into six lesion regions (upper, middle, and lower lobes for both lungs). To en-
sure multimodal consistency, the module leverages both the global image fea-
ture Vg and global text feature Tg. Firstly, an adapter (comprising two linear
layers with activation) is used to refine the image feature. A Softmax func-
tion then assigns regional weights, which are aggregated via a weighted sum
to produce Vg. Simultaneously, Tg is extracted from the EOS token of the text
representation Vt. The global image feature Vg and text feature Tg are concate-
nated and passed through a classification layer to yield the prediction. Since the
GPFC is performed with each encoder block. So, for encoder block i, we have
ℓci = BCE

(
Linear([Vg, Tg]), Y

)
, where Y denotes the ground-truth label and

BCEWithLogitsLoss is adopted for backpropagation. The overall classification
loss is defined as ℓc =

∑4
i=1 ℓci , since we have 4 encoder blocks.

Segmentation Loss We employ a loss function that combines Dice and Cross-
Entropy terms on both coarse mask M and final segmentation S to evaluate
segmentation performance. Let U be the total number of pixels and V be the
number of classes. For each pixel u and class v (positive or negative), ŷu,v
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denotes the predicted probability that pixel u belongs to class v, and yu,v is
the corresponding ground-truth label. ℓDice = 1 − 1

UV

∑U
u=1

∑V
v=1

2|ŷu,v∩yu,v|
|ŷu,v|+|yu,v| ,

ℓCE = − 1
U

∑U
u=1

∑V
v=1[ yu,v log

(
ŷu,v

)
]. The overall segmentation loss ℓs is formed

by equally weighting these two terms: ℓs = 0.5 ℓDice+0.5 ℓCE. Therefore, our pro-
posed loss ℓ can be formed as:

ℓ = λ1ℓs(M) + λ2ℓs(S) + λ3ℓc. (4)

3 Experiments

Datasets We evaluated our method on two publicly available COVID-19 med-
ical image datasets: QaTa-COV19 [7] and MosMedData+ [16]. QaTa-COV19,
compiled jointly by Qatar University and Tampere University, comprises 9258
chest X-ray images of COVID-19 cases, partitioned into training (5716 samples),
validation (1429 samples), and testing (2113 samples) sets. Each image is accom-
panied by a lesion mask that delineates the infected regions. MosMedData+ is a
large-scale lung CT dataset containing 2729 CT scan slices from multiple sources,
with 2183 training, 273 validation, and 273 testing samples—all annotated with
ground-truth infection masks. Moreover,we use the medical reports generated in
[14] to enable multimodal learning.

Implementation Details We trained our model using the PyTorch framework
with a batch size of 5 and an initial learning rate of 3 × 10−4. The model was
optimized using AdamW with a weight decay of 0.001, and a cosine annealing
learning rate schedule was applied with a warm-up period of 1000 iterations.
The training ran for 70 epochs. We set the length of the learnable query tokens
T to 10 and selected Top3 point prompts. The loss hyperparameters λ1, λ2, and
λ3 were set to 0.3, 0.6, and 0.1, respectively. All experiments were conducted on
a system equipped with an RTX-6000 48 GB GPU and 128 GB of RAM.

Quantitative Results We conducted comparative experiments on five uni-
modal methods and five multimodal methods, among which LViT, GuideDe-
coder, and MMI-UNet were proposed explicitly for these two datasets. As shown
in Table 1, our method achieves consistently the best performance on both
datasets. Notably, our model requires only 16.9M trainable parameters, demon-
strating its efficiency and ability to transfer pretrained large-scale foundation
models, thereby saving training resources. Furthermore, when compared with
standalone CXR-CLIP and MedSAM2, our approach, despite using fewer pa-
rameters, yields superior performance, proving the feasibility of fine-tuning. Ad-
ditionally, as shown in Fig. 3, our proposed method enhances the localization
of the lesion area, with segmentation results closely aligned with the actual le-
sions. This validates the effectiveness of our location-aware approach. In contrast,
CXR-CLIP and MedSAM2 tends to misclassify normal regions as lesions, which
further underscores the efficiency of our prompt generation strategy. Overall, our
method effectively overcomes the limitations of both CLIP and SAM2.
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Table 1: Performance comparison of various segmentation models on MosMed-
Data+ and QaTa-COV19 datasets.

Method Text Param(M) MosMedData+ QaTa-COV19
Dice mIoU Dice mIoU

U-Net++ [27] ✗ 74.5 0.7175 0.5839 0.7962 0.7025
nnUNet [10] ✗ 19.1 0.7259 0.6036 0.8042 0.7081
TransUNet [5] ✗ 105 0.7124 0.5844 0.7863 0.6913
SwinUNet [3] ✗ 82.3 0.6329 0.5019 0.7807 0.6834
MedSAM2 [28] ✗ 38.9 0.5427 0.4109 0.7536 0.6428
CXR-CLIP [25] ✓ 136.6 0.7628 0.6327 0.8325 0.7409
LAVT [24] ✓ 118.6 0.7329 0.6041 0.7928 0.6989
LViT [14] ✓ 29.7 0.7457 0.6133 0.8366 0.7511
GuideDecoder [26] ✓ 44 0.7775 0.6360 0.8978 0.8145
MMI-UNet [2] ✓ 56.2 0.7842 0.6450 0.9088 0.8328
Ours ✓ 16.9 0.7981 0.6572 0.9206 0.8489

Input GT LViT CXR-CLIP MedSAM2 Ours

Fig. 3: Visualization of segmentation outcomes on the QaTa-COV19 dataset. In
the images, green represents true positives, red denotes false negatives, and blue
signifies false positives.

Table 2: Ablation study on the QGAF module and GPFC loss.
Ablation MosMedData+ QaTa-COV19

Dice mIoU Dice mIoU
Baseline (w/o QGAF) 0.6948 0.5791 0.8036 0.7301
QGAF (w/o GPFC) 0.7627 0.6478 0.9012 0.8227
QGAF (Ours) 0.7981 0.6572 0.9206 0.8489

Ablation Studies We conducted experiments to validate our components.
Firstly, an ablation study on the QGAF module (Table 2) demonstrates its abil-
ity to learn multimodal information for segmentation tasks. We compared a base-
line without the QGAF module and evaluated two variants—with and without
the GPFC loss. The results indicate that our QGAF module effectively captures
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cross-modal information, while the GPFC loss further enhances lesion localiza-
tion by integrating positional data extracted from radiology reports. Specifically,
on MosMedData+, our method improves the Dice score by 10.33% and mIoU
by 7.81%, and on QaTa-COV19, the Dice score increases by 11.70% and mIoU
by 11.88%. Furthermore, Table 3 shows the QGAF module achieves optimal
performance when using the length 10 learnable query token, which effectively
leverages text information. Table 4 reveals that using the Top-3 point prompts
generally results in superior segmentation performance compared to the Top-4,
despite the latter showing a slight increase of 0.38% in mIoU on MosMedData+.
Table 5 highlights MedSAM2’s dependence on high-quality prompts, as their ab-
sence significantly degrades performance. Our analysis of three prompts reveals
that the coarse mask prompt has the most significant impact on segmentation
results—improving the Dice score by 23.20% and mIoU by 23.45% on MosMed-
Data+, and by 18.65% and 21.03% on QaTa-COV19. This is followed by point
and text prompts. Overall, the results demonstrate the critical importance of
high-quality prompts for effectively transferring SAM2 to downstream tasks.

Table 3: Ablation study on the length
(T ) of learnable query token Q.
T MosMedData+ QaTa-COV19

Dice mIoU Dice mIoU
5 0.7742 0.6273 0.8847 0.7911
10 0.7981 0.6572 0.9206 0.8489
15 0.7829 0.6501 0.9182 0.8339
20 0.7641 0.6176 0.8922 0.8001

Table 4: Ablation Study on Top-k
point prompts selection for MedSAM2
Top-k MosMedData+ QaTa-COV19

Dice mIoU Dice mIoU
1 0.7650 0.6220 0.8620 0.7940
2 0.7820 0.6400 0.9170 0.8481
3 0.7981 0.6572 0.9206 0.8489
4 0.7935 0.6610 0.9071 0.8215

Table 5: Ablation study on three different prompts.
Coarse Mask Points Text MosMedData+ QaTa-COV19

Dice mIoU Dice mIoU
✗ ✗ ✗ 0.4816 0.3527 0.6914 0.5829
✓ ✗ ✗ 0.7136 0.5872 0.8779 0.7932
✓ ✓ ✗ 0.7731 0.6392 0.8930 0.8154
✓ ✓ ✓ 0.7981 0.6572 0.9206 0.8489

4 Conclusions

In this study, we propose a location-aware segmentation framework that lever-
ages CLIP to generate three high-quality prompts for SAM2. By fine-tuning the
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QGAF bridging module with minimal training, our framework achieves high ac-
curacy. In addition, the GPFC localization loss, derived from medical reports,
enables our method to precisely localize lesion regions. This work offers a new
approach for future lightweight multimodal medical segmentation.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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