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Abstract. Pretrained segmentation models for cardiac magnetic reso-
nance imaging (MRI) struggle to generalize across different imaging se-
quences due to significant variations in image contrast. These variations
arise from changes in imaging protocols, yet the same fundamental spin
properties, including proton density, T1, and T values, govern all ac-
quired images. With this core principle, we introduce Reverse Imaging,
a novel physics-driven method for cardiac MRI data augmentation and
domain adaptation to fundamentally solve the generalization problem.
Our method reversely infers the underlying spin properties from observed
cardiac MRI images, by solving ill-posed nonlinear inverse problems reg-
ularized by the prior distribution of spin properties. We acquire this
“spin prior” by learning a generative diffusion model from the multipara-
metric SAturation-recovery single-SHot acquisition sequence (mSASHA)
dataset, which offers joint cardiac T1 and T2 maps. Our method enables
approximate but meaningful spin-property estimates from MR images,
which provide an interpretable “latent variable” that lead to highly flex-
ible image synthesis of arbitrary novel sequences. We show that Reverse
Imaging enables highly accurate segmentation across vastly different im-
age contrasts and imaging protocols, realizing wide-spectrum generaliza-
tion of cardiac MRI segmentation.
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1 Introduction

Segmentation is crucial for evaluating cardiac biomarkers from cardiac mag-
netic resonance imaging (MRI), for example, the ejection fraction from balanced
steady-state free-precession (bSSFP) cine imaging [3/4]. Learning-based meth-
ods have become the standard practice for cardiac MRI segmentation [I5I34I17],
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mostly trained on widely accessible bSSFP cine images with manual annota-
tions [3/4IT7]. However, models trained on bSSFP cine are prone to fail in test im-
ages with heterogeneous contrasts [4/17]. This can be partially mitigated by data
augmentation (e.g. blur, gamma correction, etc.) [15], which effectively general-
izes pretrained models to bSSFP cine images cross vendors and centers [27/46].

However, a much stronger contrast change comes from different MRI se-
quences, which cannot be tackled by common image augmentation techniques.
For example, an alternative to bSSFP is the gradient echo sequence (GRE),
which is less affected by field inhomogeneities [23] and more suitable for patients
with implanted devices [I0]. However, GRE has much poorer contrasts and easily
fails the models trained on bSSFP. An even stronger contrast change occurs in
quantitative imaging, such as T1 mapping by the modified Look-Locker Inversion
Recovery Sequence (MOLLI) [I8]. In MOLLI, the image readouts have substan-
tial contrast variations during the spin relaxation process, alternating between
bright and dark blood, with low myocardium-blood contrast. Consequently, seg-
mentation models trained on bSSFP images (source domain) can fail completely
on MOLLI images (target domain) even with extensive data augmentation.

To tackle the cross-sequence generalization challenge, previous works have
focused on disentangling “content” and “style” [20/19]. BayeSeg learns to remove
the style and extracts the boundary for segmentation [IIJ12]. Domain adaptation
techniques strive to learn content and style embeddings [5I28]. The learned “con-
tent” is supposed to be shared between sequences, while cross-sequence trans-
lation is achieved by interchanging the learned “style” [5I28/9]. However, such
strategies require data from new sequences in order to learn the disentangling,
and, importantly, the extracted content or style is barely interpretable. In this
study, we argue that the fundamental but overlooked “content” is the underlying
spin properties, including the voxel-wise proton density (PD), Ty, and To [13]
of blood and tissue. Given this content, the style is fully governed by the MRI
signal models of new pulse sequences. This motivates us to infer the spin proper-
ties from the observed image, for more interpretable and physics-grounded image
translation to tackle the cross-sequence domain generalization challenge.

Unlike quantitative MRI that directly maps spin properties [I8JI6/7], retriev-
ing the underlying spin properties from a qualitative image such as bSSFP is
ill-posed because infinitely many solutions may explain the same image. This
challenge parallels that of accelerated MRI, where partial measurements are in-
sufficient for image reconstruction, yet the inverse problem can be solved by
incorporating a regularizer that defines the prior distribution of plausible im-
ages [21I]. Recent MRI reconstruction works use generative diffusion models [14]
as a priori regularizers, allowing high-quality reconstruction from partial mea-
surements [26l8]. Following the same spirit, we introduce a diffusion-based gen-
erative prior on spin properties, called “spin prior”, to regularize the ill-posed
inverse problem of spin property estimation. Specifically, we leverage the mul-
tiparametric SAturation-recovery single-SHot acquisition (mSASHA) datasets,
which perform joint cardiac T; and T mapping, to learn the spin prior. We
term the process of inferring spin properties from observed images as Reverse
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Fig. 1. Images acquired by sequences ¢ and j from a subject share the same underlying
spin properties z. Reverse Imaging (dashed arrows) estimates z from the prior p(z)
that explains the observed image x;. Images of an arbitrary sequence can be generated
by MR physics from z (solid arrows). In this process, the only unknown is the prior
p(z), which we learn from the mSASHA data by a diffusion model (red).

Imaging. Reverse Imaging uniquely enables physics-grounded data augmentation
and domain adaptation without the need for target domain data. We will show
that Reverse Imaging leads to high-quality zero-shot generalization to a wide
spectrum of MRI sequences. We make the following contributions:

— We propose an interpretable cross-sequence translation framework for car-
diac MRI, which explicitly formulates the translation as applying MRI physics
forward models to estimated tissue spin properties (i.e. PD, T and T5).

— We introduce Reverse Imaging, a novel approach that reversely infers spin
properties from observed MR images using a physics-guided reverse diffusion
process. The diffusion model serves as a generative prior that regularizes the
estimation of the underlying spin properties.

— With Reverse Imaging, we achieve high-quality zero-shot generalization of
cardiac MRI segmentation, from bSSFP to a wide spectrum of unseen con-
trasts and imaging protocols.

2 Method

2.1 Physics-based Cross-Sequence Translation

Physics-Prior Decomposition Let z; and z; be images acquired using se-
quences ¢ and j, on which we aim to perform cross-sequence translation. The
direct translation p(z;|z;) from z; to z; is intractable. To solve this, we pro-
pose a decomposition of p(xj|z;), by introducing an underlying physics z =
(PD, Ty, Ts) as a “latent variable” :

pla|z:) = / Pl 2la:)dz = / pla; |2 z:)ple|z:)dz = / p(a;|2)p(zle:)dz. (1)

z z

A probability graph model is shown in Fig.[l} Reverse Imaging can be formulated
as posterior inference p(z|z;), expressed as:

log p(z|z;) o log p(x;|z) + log p(z) + Const. (2)
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As aresult of (1)) and (2)), the inference p(x;|z;) relies on two likelihoods p(z;|z)
and p(z;|z), which are directly accessible from the imaging physics forward
model. The only missing piece for inference, therefore, is the prior distribution
on the spin properties p(z). Moreover, we can interchange z; and z; in once
the prior p(z) is known, allowing dual-direction translation of both p(z;|x;) and

p(wilz;).

Likelihoods from MR Imaging Physics The log-likelihood of observing
image z; from spin properties z under sequence 1 is:

log p(wi|z) o || f; (2) — aill5 (3)

where the signal equation (i.e. forward model) f; can be expressed by the Bloch
equation of MR imaging [13]. Below, we list the signal equations for the sequences
involved in this work, namely, bSSFP, MOLLI T; mapping, and GRE. We denote
the flip angle (FA) as w, the repetition and echo times as TR and TE. The bSSFP
imaging equation [24] with short TR and TE is:

PD sin(w)

fss(z) = 1+ cos(w) + [1 — cos(w)]T1/Ty"

(4)

For Ty mapping, the phase-insensitive readout [25] at inversion time ¢y is:

; (5)

fuorri(z) =

fosta) (1= TNV - exp(- )

—1
where the apparent Ty is T} = (T% cos?(¥) + T% sinz(%)) and the inversion
sin(%)
sin(w)

factor INV = 1 4+ (1 + cos(w) + [1 — cos(w)]% . For GRE cine images

from patients with implanted devices, let E; = exp(—?r—lj) and Eg = exp(—%),
the GRE signal model [I3] is described as

1-E;

fere(z) = PD Sin(w)m

E,. (6)

2.2 Generative Prior on Spin Properties from mSASHA

To learn the spin prior p(z), we leverage an advanced quantitative MRI sequence
mSASHA, which enables joint T; and Ty mapping [7]. mSASHA consists of a
train of saturation recovery pulses (SR) with SR time TS, followed by a Ts-prep
pulse with duration TD and echo time TE. Its signal equation is:

TE TD

JmsasHA (2) :A(z){l— [1— (1—6*%) e‘TT] e TT}, (7)

where the unknowns A(z), T, Ty can be extracted from multiple acquisitions of
fmsasua with varying TS, TD and TE by least-square fitting [7]. A encodes PD
and sequence parameters, and the approximation PD = A can be used [I12].
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To model the prior of spin properties z = (PD, Ty, Ts), we propose to train a
denoising diffusion probabilistic model (DDPM) [14] in the z space. DDPM adds
noise to the real z’s from mSASHA in the forward process z; = /1 — Byzs_1 +
V/Be for T steps, where f3; is the noise scheduler at ¢ and € ~ N(0,I). The learned
model can generate data by starting with a Gaussian distribution z7 ~ N(0, 1)
and reversing the diffusion process:

Zi_1 = (zt + (1 — o)V, log p(z¢)) + ove, (8)

1
Vvt
where oy = 1 — 3; and o7 = 1_7&’:1 B¢. The diffusion model learns a denoising

1—
backbone parameterized by 6, V,, logp(z:) =~ —\/ll;aeg(zt,t), a; = Hf«:l ey
— Gt

as the generative prior for z.

2.3 Reverse Imaging and Cross-Sequence Synthesis

Reverse Imaging searches for z in the prior space that best explains the observa-
tion x;. Following conditional generation principles [8], we replace V,, log p(z:)
in with V,, log p(z:]x;):

V2, log p(ze|zi) o< Vy, log p(xi]z¢) + Va, log p(z¢). 9)

We approximate the time-step-dependent likelihood log p(z;|z:) by: log p(x;|z:) =~

log p(x;|Zo(2¢)), where zg(z;) =~ (z: — /1 —@eq(ze))//@: [8]. Starting from
zr ~ N(0,1), the recursive process for reverse the imaging sequence x; is

s = —= (= Jtannt)) +ove = € o ofan)) — 3. (10
where £ is a step size parameter. The guided reverse diffusion process in
yields the estimated spin properties z = zg in the prior distribution that recon-
structs x;. After Reverse Imaging, we can synthesize images of novel sequences
using the imaging physics equations f; described in -@. Synthesizing other
imaging sequences is also possible by sequence-specific Bloch equations. In addi-
tion, we can also use the image physics f; of z; to guide generation by replacing
fi, x; with f;, x; in and translating from target to source (T2S).

3 Experiments

Datasets We used the ACDC dataset [3] training split with bSSFP cine images
of 100 subjects as the source domain dataset. The mSASHA dataset for learning
the spin prior consists of 63 subjects with 186 short-axis slices. For evaluation of
cross-sequence generalizability, we included two datasets imaged with different
sequences: 1) MOLLI T; mapping data: 49 subjects with 131 short-axis slices
in total. Each slice contains 11 baseline images with different contrasts. 2) cine
MRI of 25 subjects with implanted devices: 16 subjects with the bSSFP sequence
(Dev-bSSPF) and 9 with GRE sequence (Dev-GRE). Both the MOLLI and the
Device datasets have significantly different contrasts than those of the ACDC.
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Experimental Settings The DDPM is pretrained on ACDC images for 36, 000
steps and then fine-tuned with the real spin properties of from mSASHA for
6,000 steps on the resolution of 128 x 128. We employ the hugging-face diffuser
for the implementation of DDPM [22]. The estimated spin properties were resized
to their original resolution after Reverse Imaging. We perform T' = 1000 forward
steps and 200 reverse steps of diffusion in for Reverse Imaging, with the
step size £ = 400. As the exact FA for ACDC scans is unknown, we approximate
it with w = 45° as typically used. We open source the estimated spin properties
for the ACDC dataset and codeﬂ For evaluating the generalization performance,
we include the following methods:

— Baseline We train an nnUNet[I5] with the ACDC data as the baseline;

— BayeSeg We compare our model against BayeSeg [T1/12] which extracts the
boundary and contour information from images for generalization;

— RI-T2S We translate the MOLLI and GRE data into bSSFP cine by Reverse
Imaging (RI) and perform segmentation on the translated (T2S) images with
the baseline model;

— RI-Aug. We perform Reverse Imaging on the ACDC cine images and extend
the nnUNet framework by synthesizing MOLLI and GRE images through
the estimated spin properties for physics-based augmentation in and @

4 Results and Discussion

4.1 Reverse Imaging

We first show an example of Reverse Imaging a bSSFP cine in Fig. (a). The
estimated spin properties z accurately reconstruct the bSSFP image, indicating
a high likelihood. The predicted PD has low contrast between tissues, while in
T; and Ts estimation, blood has a high T; and T, myocardium has high T,
but low Ty, and fat has low T; but a high T5. These match the reference rela-
tive magnitude of the spin properties [29]. Based on estimated spin properties,
images of various imaging protocols can be generated with large contrast vari-
ations, as shown in Fig. (b) Reverse Imaging does not provide precise spin
property estimation, but we note that they are not used for quantitative evalu-
ation purposes w.r.t. T or Ts, instead, they serve to synthesize novel contrasts
that are essential for wide-spectrum generalization. Reverse Imaging also enables
the T2S translation from MOLLI to bSSFP cine (Fig. [2}(c)). Practically, our re-
verse imaging results of cine images can be used for the prior training although
the mSASHA dataset is not widely available.

4.2 Segmentation Performance

We now demonstrate that Reverse Imaging can significantly improve the gener-
alization of segmentation models. In Table [I] we list the segmentation accuracy

! https://github.com/Ido-zh/cmr_reverse.git
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Fig. 2. (a) Reverse Imaging a bSSFP image z; (yellow). The estimated z accurately
reconstructs #; ~ z;. (b) Generating GRE (red) and MOLLI (blue) images with z. The
FA in degrees and TR/TE or ¢inv in milliseconds are given for each image. (c) Reverse
Imaging a MOLLI readout for target-to-source (T2S) translation.

measured by the Dice score of the left ventricle (LV), myocardium (MYO) and
right ventricle (RV) in the challenging MOLLI and Device datasets. To further
evaluate the robustness against contrast variation, we also report the Dice for
each baseline image of MOLLI in Fig. |3, as MOLLI readouts show strong con-
trast variation during inversion recovery. Qualitative examples of segmentation
results are shown in Fig. [4]

Table 1. Segmentation accuracy on novel sequences measured by Dice score [%]. Sta-
tistical significance (p < 0.05) is indicated by *.

MOLLI Device
RV MYO LV RV MYO LV

Baseline [15]24.0 +£12.9 47.4 +£19.5 39.9+22.0 68.9+25.2 86.9+86 91.9+7.6

BayeSeg [12]51.5 +26.9 41.4+19.9 57.0+24.1 53.6 +21.0 62.6 £12.6 72.6+19.1
RI-T2S 63.6+36.5 69.84+20.1 82.7+£21.0 66.4+24.2 823+152 88.6+12.1
RI-Aug. 87.0+17.8"86.5+9.8" 91.6 £9.3" 87.4+9.5" 93.1 4.0 96.0 + 3.5"

Methods

The baseline nnUNet generalizes poorly in the MOLLI images (Table [1)),
especially when the blood-myocardium contrast is inverted (see #4-#7 in Fig.
and LL-#2 in Fig. E[) BayeSeg can improve performance on dark blood images,
yet it can still fail on low-contrast images (e.g. Fig. E| LL-#3-#5). The device
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Fig. 3. Segmentation accuracy on each MOLLI readout during inversion recovery.

BayeSeg Baseline Image

RI-Aug.

Fig. 4. Segmentation of 5 MOLLI baseline images (LL-#1-#5) and 2 device cine im-
ages, all of which have different contrast than bSSFP cine images used for training.

images have bright blood but lower contrast, and the baseline nnUNet works
more robustly than BayeSeg with higher Dice scores (Table [I]). Performing the
T2S transform (RI-T2S) significantly improved the segmentation accuracy for
MOLLI, but a performance drop is observed in the device dataset. This is because
the short TE (~ 1.5 ms) in GRE minimizes T» weighting (cf. (€)). In this
case, Reverse Imaging is limited by the little amount of information carried
by the observed image. However, this can be solved by using Reverse Imaging
for augmentation instead (RI-Aug.), which achieves the highest segmentation
accuracy in both datasets, significantly better than all other methods (Table
p < 0.05). With RI-Aug., the trained model consistently achieves highly accurate
segmentation on images with various contrasts, including low-contrast, bright
and dark blood, and GRE images (Fig. [4).
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5 Conclusion

We introduced Reverse Imaging, a novel physics-grounded approach for cross-
sequence generalization in cardiac MRI segmentation. Combining imaging physics
and a generative diffusion prior, our method estimates underlying spin properties
from observed images. Reverse Imaging provides an interpretable and physically
grounded solution for domain adaptation, addressing the challenge of contrast
variations across imaging protocols. Our experiments demonstrate that Reverse
Imaging significantly boosts segmentation robustness, enabling zero-shot gener-
alization to unseen sequences without requiring target-domain data. This ap-
proach offers a new paradigm for improving cardiac MRI segmentation gener-
alizability, with potential applications to broader medical imaging tasks where
domain shifts pose a significant challenge.
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