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Abstract. Magnetic Resonance Elastography (MRE) is a non-invasive
imaging technique that estimates tissue elasticity using Magnetic Reso-
nance Imaging. The conventional approach for elasticity reconstruction
in MRE involves solving an inverse problem through numerical methods
such as Helmholtz inversion and the finite element method. However,
these techniques suffer from noise sensitivity and high computational
costs due to iterative optimization. Recently, Physics-Informed Neural
Networks (PINNs) have been studied for tissue elasticity reconstruction,
integrating physical constraints into deep learning models. While PINNs
improve noise resistance, they require a separate network to be trained
for each instance, resulting in a computationally inefficient training. In
this study, we introduce an operator learning-based approach to tissue
elasticity reconstruction, which learns a generalized mapping from in-
put measurements to tissue elasticity. This method enables simultaneous
learning across multiple instances, significantly improving computational
efficiency. Experimental results using box and abdomen simulation data
show that our approach achieves superior reconstruction performance
and robustness to noise.

Keywords: Operator Learning · Neural Operator · Magnetic resonance
elastography · Elasticity reconstruction.

1 Introduction

Magnetic Resonance Elastography (MRE) is a non-invasive imaging technique
that utilizes Magnetic Resonance Imaging (MRI) to estimate tissue elasticity
[16]. Quantitative assessment of tissue elasticity has been applied in various
clinical domains, including the diagnosis of pathological lesions, disease progres-
sion evaluation, and treatment monitoring for conditions such as liver fibrosis,
breast cancer, neurological disorders, and cardiovascular diseases [19, 24, 22, 9].

MRE estimates tissue elasticity through three stages. First, a shear wave
is induced within the tissue, generating shear deformation. Next, the resulting
wave displacement is measured using MRI and captured as a wave image. Finally,
tissue elasticity is reconstructed by solving an inverse problem formulated from
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the elasticity equation, which defines the relationship between displacement and
elasticity. Traditionally, this inverse problem has been solved using numerical
methods, with Helmholtz inversion [18] and finite element method (FEM) [6]
being the most common approaches. However, these methods suffer from noise
sensitivity and high computational cost due to iterative optimization.

To overcome these challenges, Physics-Informed Neural Networks (PINNs)
have been applied to tissue elasticity reconstruction. PINNs approximate the so-
lution of partial differential equations (PDEs) by embedding physical constraints
into the loss function, allowing them to enforce underlying physical laws while
leveraging available data. In particular, MRE-PINN [20] demonstrates robust-
ness to noise and produces smoother elastograms, highlighting its potential as
an alternative approach.

However, a key limitation of PINNs is that they require retraining for each
new PDE instance, making them computationally expensive. In contrast, op-
erator learning via neural operators [10] learns a general mapping from inputs
(e.g., initial/boundary conditions) to outputs, allowing multiple instances to be
learned efficiently with a single model.

In this study, we present the first operator learning-based method for tis-
sue elasticity reconstruction that directly maps diverse wave images to elasticity
predictions. In contrast to PINN-based approaches, which typically require sep-
arate training for each wave image, our method eliminates this overhead and
significantly improves training efficiency. Experiments with box and abdomen
simulation data demonstrate superior reconstruction performance and noise ro-
bustness, suggesting its effectiveness in elasticity reconstruction tasks.

2 Related works

PINNs. PINNs incorporate physical laws into neural networks to solve PDEs,
addressing the limitations of traditional solvers and data-driven methods [21,
8]. By enforcing PDE constraints in the loss function, they provide noise-robust
solutions and handle complex or incomplete data effectively. However, PINNs
must be retrained for each new set of initial and boundary conditions, leading
to high computational costs and limited scalability for large or diverse datasets.
Operator Learning. Operator learning [10] has been developed to overcome
the limitations of numerical methods and neural PDE solvers, offering a scal-
able approach to learning mappings between function spaces. As the primary
implementation of operator learning, neural operators generalize across multi-
ple problem instances without requiring separate training, making them more
computationally efficient than PINNs. Among various neural operator architec-
tures, DeepONet [14] is one of the most well-known approaches. It employs a
branch-trunk architecture to approximate nonlinear operators, and several ex-
tensions have further enhanced its capabilities [15, 11, 2, 3]. However, although
neural operators like DeepONet exhibit strong generalization capabilities across
different conditions, they struggle to enforce physical constraints, often resulting
in physically inconsistent solutions. To overcome this, physics-informed neural



Physics-Informed Neural Operators for Tissue Elasticity Reconstruction 3

operators have been developed, integrating PDE constraints into the learning
process to ensure adherence to physical laws while maintaining generalization
ability [13, 23, 12].
Deep Learning Approaches for Inverse Problems. Many deep learning
methods have been proposed for solving inverse problems, utilizing different tech-
niques to tackle key challenges [17, 5, 4, 7]. MRE-PINN [20] was the first to ap-
ply PINNs to tissue elasticity reconstruction, using two PINN modules—one for
displacement and another for elasticity—trained with a PDE-based loss. While
MRE-PINN improves noise robustness and produces smoother elastograms com-
pared to numerical methods, its per-instance training requirement results in high
computational costs.

3 Proposed Method

We propose MRE-Hyper, a HyperDeepONet-based model specifically designed
for tissue elasticity reconstruction. In this section, we first present our baseline
models, DeepONet [14] and HyperDeepONet [11], followed by a detailed expla-
nation of the proposed MRE-Hyper model and its training strategy.
Notations. The goal is to learn the operator G, which maps an input function
u to its corresponding output function: G : u 7→ G(u). The input function u(x)
is defined on the domain x ∈ X ⊂ Rdx . The output function is evaluated on the
domain y ∈ Y ⊂ Rdy , where the output function is denoted as G(u)(y).
Baselines. DeepONet approximates G using a branch-trunk structure. The
branch network NBranch maps the input u to a feature vector, encoding the in-
put function into a finite-dimensional feature space. The trunk network NTrunk

maps y to a basis function representation, encoding the query point in terms of
the learned basis functions. The operator is then computed as follows:

Gθ(u)(y) =

p∑
k=1

NBranch(u; θ)kNTrunk(y; θ)k, (1)

where p is the number of basis functions used in the approximation. However,
the expressivity of the model is limited due to the linear combination of the
branch and trunk network outputs. To overcome this limitation, HyperDeep-
ONet replaces the branch network with a hypernetwork H that generates the
parameters Θ of a target network T :

Θ = H(u; θ), Gθ(u)(y) = T (y;Θ). (2)

Here, θ is the learnable parameters of networks in general, while Θ refers to the
parameters generated by H which are then used in T . This allows HyperDeep-
ONet to capture complex operators with greater expressivity than DeepONet,
making it particularly effective for tissue elasticity reconstruction, where sharp
variations in the elasticity solution require a more sophisticated approach.
Model. The proposed MRE-Hyper comprises two HyperDeepONet networks,
Hyper-u and Hyper-µ, as shown in Fig. 1. Both networks take as input usample,
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Fig. 1: Overall architecture of the proposed MRE-Hyper.

subsampled from the wave image u, and yfourier, the Fourier-encoded spatial co-
ordinates of the target points. Each HyperDeepONet consists of a hypernetwork
H and a target network T . The hypernetwork encodes usample and generates a
set of parameters Θ, which the target network then applies to yfourier to predict
the corresponding function values.

For Hyper-u, the hypernetwork Hu generates parameters Θu, which the tar-
get network Tu uses to predict the continuous displacement function:

Θu = Hu(usample; θu), ûθu(y) = Tu(yfourier;Θu). (3)

Similarly, for Hyper-µ, the hypernetwork Hµ generates parameters Θµ, enabling
the target network Tµ to predict the elasticity function:

Θµ = Hµ(usample; θµ), µ̂θµ(y) = Tµ(yfourier;Θµ). (4)

Inspired by [23], we incorporate Fourier encoding to enhance function ap-
proximation. By employing two HyperDeepONet modules, MRE-Hyper achieves
efficient and expressive reconstruction of tissue elasticity.
Training. The model adopts a physics-informed neural operator framework,
where the physical knowledge of linear elasticity is incorporated through a PDE
loss to enforce physical consistency. Unlike conventional operator learning, which
relies on data-driven supervision, this approach leverages physics-based con-
straints, enabling operator learning even in the absence of explicit training data.
The training process follows a sequential learning strategy. First, Hyper-u is
trained using a reconstruction loss Lrecon:

Lrecon =
1

mn

m∑
j=1

n∑
i=1

∥ûθu(uj)(yi)− uj(yi)∥2 . (5)

where n is the number of query points used to evaluate the target function and
m is the number of wave images. Subsequently, Hyper-u and Hyper-µ are jointly
optimized with a PDE residual loss Lpde derived from linear elasticity theory.
For simplicity, we denote µ̂θµ(uj)(yi) and ûθu(uj)(yi) as µ̂ji and ûji, respectively,
leading to the following form:

Lpde =
1

mn

m∑
j=1

n∑
i=1

∥∥µ̂ji∇2ûji + (∇ûji +∇ûT
ji)∇µ̂ji + ρω2ûji

∥∥2 . (6)
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Here, ρ is the mass density of the material, and ω is the actuator frequency
in MRE. This formulation allows Hyper-µ to learn the mapping to elasticity
without requiring ground-truth µ supervision.

4 Experiments

We conducted experiments on two datasets, comparing the proposed MRE-
Hyper with both PINN-based methods and numerical approaches.
Datasets. We used two publicly available FEM-based simulation datasets from
the BIOQIC research group [1]. FEM-Box dataset consists of numerical FEM
simulations of elastic wave propagation in an incompressible rectangular domain
containing four stiff inclusions of decreasing size. It provides six wave fields of
dimensions 80 × 100 × 10 × 3 and corresponding ground-truth (GT) elasticity
maps, generated at frequencies from 50 to 100 Hz in 10 Hz increments. The
FEM-Abdomen dataset comprises numerical FEM simulations of elastic wave
propagation in a 3D human abdomen model with known tissue properties. It
includes four wave fields with dimensions 174×136×20×3 and corresponding GT
elasticity, generated at frequencies ranging from 30 to 48 Hz in 6 Hz increments.
Compared Methods. We compared our MRE-Hyper model with several ex-
isting methods. One of them is Algebraic Helmholtz Inversion (AHI) [18], which
estimates the shear modulus by solving the Helmholtz equation as a linear sys-
tem after computing the Laplacian of the wave image using finite differences.
We also evaluated FEM-HH [6], which directly inverts the Helmholtz equation
using the Finite Element Method (FEM), and FEM-het [6], which incorporates
heterogeneous material assumptions into the PDE inversion. Additionally, we
compared MRE-PINN, a PINN-based model for elasticity reconstruction. Stan-
dard HyperDeepONet and DeepONet could not be directly applied to this task
without modifications, so they were excluded from the comparison.
Evaluation Metrics. We evaluated the Pearson correlation between the recon-
structed elasticity and the GT elasticity, referred to as the µ correlation. For the
FEM-Box dataset, we also computed the Contrast Transfer Efficiency (CTE),
which measures the ratio of the contrast in predicted elasticity to that in GT
elasticity. Following [20], CTE was computed for each of the four target regions,
and the CTE error was defined as the mean absolute deviation of these values
from the ideal value of 100%.
Noise Robustness. Since real MRE data is often noisy, robustness to noise is
a crucial factor in evaluating elasticity reconstruction methods. Following MRE-
PINN [20], we added Gaussian noise at five different levels to the wave images
and evaluated the elasticity reconstruction performance of each method.
Implementation Details. Each reconstruction method was applied to indi-
vidual single-frequency wave images. We trained MRE-PINN with independent
networks for each wave image, whereas our MRE-Hyper was trained on all wave
images simultaneously. All networks were implemented using PyTorch 2.1.2. Our
code is available for reproducibility. For details, please refer to the repository.1

1 https://github.com/youjin-DDAI/MRE-Hyper
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Table 1: Quantitative comparisons in terms of µ correlations and CTE error.

Freq
(Hz)

AHI FEM-HH FEM-het MRE-PINN MRE-Hyper (Ours)
µ ↑ error ↓ µ ↑ error ↓ µ ↑ error ↓ µ ↑ error ↓ µ ↑ error ↓

50 0.61 66 0.38 87 0.32 81 0.79 59 0.76 60
60 0.54 93 0.48 75 0.37 78 0.84 53 0.81 48
70 0.56 60 0.54 53 0.38 51 0.75 56 0.81 50
80 0.58 73 0.57 54 0.46 41 0.76 67 0.74 66
90 0.44 79 0.55 54 0.36 65 0.72 49 0.82 49
100 0.46 59 0.63 57 0.53 44 0.71 80 0.80 53

Mean 0.532 71.7 0.525 63.3 0.423 60.0 0.762 60.7 0.790 54

Fig. 2: Qualitative comparison of µ reconstructions at 90 Hz.

4.1 Experiments on FEM-Box Data

Experimental Results. Table 1 presents the µ correlations and CTE errors
across different frequencies, where the best results are highlighted in bold. The re-
sults indicate that deep learning-based methods, MRE-PINN and MRE-Hyper,
achieve higher correlations and lower CTE errors compared to numerical ap-
proaches. Notably, MRE-Hyper outperformed MRE-PINN, achieving the high-
est mean correlation of 0.790 while maintaining consistently strong correlations
across all frequencies. The proposed MRE-Hyper also achieved the lowest mean
CTE error, surpassing all other methods. It consistently produced lower errors,
confirming its effectiveness in reconstruction. These findings are further sup-
ported qualitatively in Fig. 2.

(a) µ correlation (b) CTE error

Fig. 3: Performance comparisons under increasing noise levels.
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Fig. 4: Qualitative comparison of µ reconstructions at 90 Hz under increasing
noise levels. Columns correspond to increasing noise levels: -inf, -50, -40, -30, -20, -10
dB.

Robustness to Noise. Fig. 3(a) illustrates the µ correlations of each method
at 90 Hz as noise levels increase. While the deep learning-based methods re-
mained largely unaffected by increasing noise, the numerical methods, AHI,
FEM-HH, and FEM-het, experienced a significant performance drop. Among
them, FEM-based methods exhibited particularly severe degradation even with
a small amount of noise. Fig. 3(b) shows the CTE error at 90 Hz under increas-
ing noise levels. Similar to the µ correlation results, the deep learning-based
methods maintained consistently low errors with minimal variation, whereas
numerical methods exhibited clear sensitivity to noise. The robustness of the
proposed MRE-Hyper method against noise is further demonstrated in Fig. 4.

4.2 Experiments on FEM-Abdomen Data

Experimental Results. Table 2 presents the µ correlation for each frequency,
computed only for soft tissues by excluding bones with elasticity below 10 kPa.
Correlation values for FEM-HH and FEM-het were NaN and thus omitted. The
results indicate that MRE-Hyper consistently achieves the highest µ correla-
tion across all frequencies. Additionally, as shown in Fig. 6, MRE-Hyper closely
follows the GT elasticity trend.
Robustness to Noise. Fig. 5 visualizes how µ correlation varies with noise
levels at 36 Hz. FEM-HH and FEM-Het were excluded from the graph as their
correlation values were NaN. The results suggest that deep learning-based meth-
ods are more robust to noise than the numerical method AHI, with MRE-Hyper
maintaining high performance even at high noise levels.

4.3 Discussion on Computational Time

Table 3 presents the computational times and requirements of each method for
elasticity reconstruction on the FEM-Abdomen dataset. AHI and FEM require
no training but rely on iterative solvers, leading to higher inference times. MRE-
PINN and MRE-Hyper, on the other hand, require an initial training phase but
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Freq (Hz) AHI MRE-PINN MRE-Hyper
30 0.57 0.55 0.79
36 0.67 0.68 0.81
42 0.66 0.70 0.83
48 0.68 0.77 0.84

Mean 0.645 0.675 0.818

Table 2: µ correlations.
Fig. 5: µ correlations at 36 Hz
under increasing noise lev-
els.

Fig. 6: Qualitative comparisons of µ reconstructions.

Table 3: Comparison of computational times and requirements on FEM-
Abdomen data

AHI FEM MRE-PINN MRE-Hyper

Requires Initial Training No No Yes Yes
Inference Time (s) 1.1 20.03 0.04 0.18
Generalization to New Instances Yes Yes No Yes

enable faster inference. Notably, MRE-PINN necessitates retraining for each new
instance, whereas MRE-Hyper generalizes across different wave images without
additional training. Although MRE-Hyper’s per-inference time is slightly longer



Physics-Informed Neural Operators for Tissue Elasticity Reconstruction 9

than MRE-PINN’s, its scalability for new instances provides a clear computa-
tional advantage in real-world scenarios.

5 Conclusion

In this study, we introduced MRE-Hyper, a physics-informed neural operator
framework that learns a generalized mapping from wave images to elasticity by
incorporating PDE constraints. Our approach overcomes the limitations of con-
ventional methods by enabling efficient learning across multiple instances while
eliminating susceptibility to noise. Experimental results support the superiority
of the proposed method, highlighting operator learning as a promising approach
for tissue elasticity reconstruction.
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