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Abstract. Monocular depth estimation in bronchoscopy can significantly
improve real-time navigation accuracy and enhance the safety of in-
terventions in complex, branching airways. Recent advances in depth
foundation models have shown promise for endoscopic scenarios, yet
these models often lack anatomical awareness in bronchoscopy, overfit-
ting to local textures rather than capturing the global airway struc-
ture—particularly under ambiguous depth cues and poor lighting. To
address this, we propose Brea-Depth, a novel framework that integrates
airway-specific geometric priors into foundation model adaptation for
bronchoscopic depth estimation. Our method introduces a depth-aware
CycleGAN, refining the translation between real bronchoscopic images
and airway geometries from anatomical data, effectively bridging the do-
main gap. In addition, we introduce an airway structure awareness loss
to enforce depth consistency within the airway lumen while preserving
smooth transitions and structural integrity. By incorporating anatomi-
cal priors, Brea-Depth enhances model generalization and yields more
robust, accurate 3D airway reconstructions. To assess anatomical real-
ism, we introduce Airway Depth Structure Evaluation, a new metric for
structural consistency. We validate BREA-Depth on a collected ex-vivo
human lung dataset and an open bronchoscopic dataset, where it out-
performs existing methods in anatomical depth preservation.
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1 Introduction

Accurate bronchoscopic depth estimation is essential for navigation and 3D air-
way reconstruction, but obtaining reliable ground truth remains challenging.
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Many existing methods [24, 14, 2, 28, 15, 10| generate depth supervision from CT-
derived synthetic data and often employ CycleGAN-based domain translation
[14, 2, 10] to adapt to bronchoscopic images. Compared to other GANs and recent
diffusion methods [4], CycleGAN remains popular for learning from unpaired
data without large computational or dataset demands [18]. Yet CT-derived syn-
thetic depth often yields oversimplified maps lacking realistic variation and gen-
eralizability, limiting performance under real-world bronchoscopic conditions.

Recent depth foundation models, such as Depth Anything [26], offer improved
generalization by learning robust depth representations from large-scale, unla-
beled image sets. Inspired by their success, recent works [6, 23, 5] have adapted
foundation models for endoscopic applications. However, these methods still pri-
oritize pixel-level accuracy over anatomical awareness, limiting their reliability
for bronchoscopic tasks that require structurally precise depth, such as targeted
biopsy or localized drug delivery.

A key challenge in adapting foundation models to bronchoscopy is their lack
of anatomical awareness. Unlike general endoscopic or open-world scenes [22],
bronchoscopy involves navigating structured yet deformable airway branches.
Models relying solely on photometric cues often fail to capture the global air-
way geometry, particularly under ambiguous depth conditions [16]. Furthermore,
large-scale models such as Depth Anything [26] have limited exposure to airway
branching topologies, leading to overfitting on local textures rather than learning
structural priors. Additionally, standard evaluation metrics (e.g., Abs Rel [8]) fo-
cus on pixel-level accuracy but fail to assess global anatomical consistency—an
essential feature for navigation and 3D airway reconstruction.

To overcome existing limitations, we propose Bronchoscopy REalistic Airway-
geometric Depth Estimation (BREA-Depth), a framework integrating airway-
specific structural priors into depth estimation. Our approach employs a Depth-
aware CycleGAN to refine synthetic-to-real translation, bridging the gap be-
tween simulated training data and real bronchoscopic footage. Additionally, we
introduce an Airway Structure Awareness Loss to enforce depth consistency
within the airway lumen while preserving smooth transitions and geometric in-
tegrity. To evaluate anatomical consistency, we propose an Airway Depth Struc-
ture Fvaluation metric, assessing depth distribution relative to the airway lumen.
For validation, We collected bronchoscopic video data from ex-vivo human lung
models and annotated 3,437 bronchoscopic images with semantic segmentation
across five navigation sequences.

We extensively evaluate BREA-Depth against state-of-the-art foundation
models [26,27] and recent bronchoscopy-adapted approaches [6,23]. Our exper-
iments on both our collected dataset and the open dataset [24] demonstrate
that BREA-Depth significantly outperforms existing techniques, particularly in
anatomically complex regions with limited depth cues. Source code and ex-vivo
lung data are available at https://github.com/SIRGLab/BREA-Depth.

Our main contributions are summarized as follows:
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Fig. 1. (a) Overview of our bronchoscopic depth estimation framework using a cycle-
consistent adversarial approach with unpaired synthetic and real bronchoscopic images
through two branches: (i) Syn-to-Real translates simulated depth maps and frames
from a synthetic airway model into a realistic style, and (ii) Real-to-Syn reduces texture
artifacts in real images. A foundation model provides pseudo-depth supervision, while a
discriminator enforces realism. (b) During inference, a bronchoscopic frame I, generates
a depth map D and a synthetic frame I that reduces texture noise while preserving
geometric details. (¢) Geometrically accurate bronchial tree generated in Blender and
used to collect synthetic data. (d) Our proposed Airway Structure Awareness loss
enforcing depth consistency and smooth transitions within the airway lumen.

1. BREA-Depth, a novel framework that integrates airway geometry into foun-
dation depth estimation, ensuring anatomically consistent depth predictions
while preserving the complex bronchial structure.

2. We introduce Airway Depth Structure Evaluation, a new metric assessing
anatomical consistency in depth predictions relative to the airway lumen,
complementing existing evaluation methods.

3. We open-source a human lung bronchoscopy dataset to support future re-
search on depth estimation in bronchoscopy, facilitating further advance-
ments in airway navigation and intervention.

2 Methodology

The BREA-Depth model (Flg 1) processes a bronchoscopic frame X € R7ZxWx3
to generate a depth map D € RE*XW*1 and a synthetic-style frame Y € REXWx3,
which reduces texture noise while preserving airway geometry. Training follows
a CycleGAN approach [30], leveraging unpaired synthetic images and real bron-
choscopic images through two branches: (i) Syn-to-Real, which refines synthetic
depth maps and frames into realistic representations, and (%) Real-to-Syn, which
simplifies real frames while preserving geometric features. Pseudo ground truth
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from a foundation model supervises real-depth predictions, while a PatchGAN
discriminator [13] enforces alignment between generated depth maps and frames.

The following sections detail our simulation setup for generating synthetic
airway geometry, the Depth-Aware CycleGAN for depth estimation, and a loss
function that enforces depth consistency within the airway lumen.

2.1 Geometrically Accurate Model of Airways

We developed a physiologically realistic bronchoscopy simulation by generating
3D lung structures based on key geometric properties: (i) airway branching, (ii)
bifurcation structure, and (iii) carinal rounding. These parameters are derived
from anatomical airway models [20, 9] and airflow-based geometric models [11,
12] to ensure accurate lung morphology representation.

The bronchial tree is modeled as a series of cylindrical airways undergoing
binary branching, where each airway has a length L and diameter D, with the
length-to-diameter ratio L/D specified per generation. Given a parent airway of
diameter D,,, daughter branches have diameters D, and Dy, defined by h, =
D, /D, and hy, = Dy/D,,, where h,, hy € (0,1) follow anatomical scaling laws.

The bifurcation region smoothly transitions between the parent and daughter
branches, governed by branching angles ®,, ®;, curvature radii R}, R;, and ring
radii Ry (¢sa), Ro(¢psp). The branching angles are sampled within a physiologi-
cally valid range @, Py € [Ppmin, 120°], where @, prevents airway intersection.
The curvature radii are computed as:

* Da * Db
a - . 9 Rb - .
2sin @, 2sin @y,

(1)

A sigmoid-based transition function ensures gradual bifurcation tapering: R, (¢sq) =
D, - f(d)sa)v Rb(¢sb) =Dy - f(¢sb)
Carinal rounding smooths bifurcation transitions using continuous rounding

circles centered at K, with radius R, = ( rn)in]Rz V(r— K;)? + (y — Ky)?, where
T,Y)E

K, K, define the circle centers, and radii are computed for sagittal angles ¢, €
[0, R,] and ¢4, € [0, Rp]. Unlike previous models assuming parallel circles [11],
our method dynamically tilts them to match airway asymmetry.

To enhance realism, additional constraints are applied. Twist angles © are
sampled uniformly as © ~ U(0°,360°), while airway lengths follow a Gaussian
distribution L ~ N (Lmean;0-3Lmean), where Lyean is the expected length per
generation. These constraints ensure anatomically plausible airway structures
while introducing natural variability. The model is implemented in Blender [3]
for realistic bronchoscopy simulations, as shown in Fig. 1c.

2.2 Depth-Aware CycleGAN

By using simulated RGB—depth pairs generated from our airway model, we in-
troduce a Depth-aware CycleGAN that refines synthetic-to-real translation by
enforcing airway-specific depth constraints. It addresses the domain gap caused
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by the lack of texture and structural variation in synthetic images, even though
they capture accurate lumen geometry. Unlike conventional style transfer meth-
ods that rely on feature distribution similarity [14, 28]—often failing to preserve
structural geometry—our model directly incorporates depth to guide translation,
resulting in more anatomically faithful adaptations. During training, synthetic
images provide paired RGB—depth supervision, while real bronchoscopic images
are paired with pseudo-depth maps from a foundation model [26], enabling hy-
brid supervision and improving depth estimation under real-world conditions.
Our framework comprises two U-Net Transformer-like [19] encoder-decoder
branches: Syn-to-Real, which refines depth maps to enhance texture and struc-
ture, and Real-to-Syn, which converts bronchoscopic images into synthetic-style
frames and generates depth maps. The synthetic-style output provides auxil-
iary supervision that guides the encoder to preserve anatomical structure and
suppress texture noise. The translation process follows:
Synthetic-to-Real Translation: Given a synthetic image X = {15, Ds}, where
I, € RTXWX3 represents the synthetic RGB image and D, € RTXWX1 s the
perfect depth map, the encoder maps it to a latent representation Z; and the
decoder then generates the translated real-style RGB image I, and its corre-
sponding real-style depth D,:

Zs = Es(Ds)a Y, = Dr(Zs)a i/ts = {jraDr} (2)

Real-to-Synthetic Translation: For a real bronchoscopic image X, = {I,}, the
encoder extracts its feature representation Z,., and the decoder then predicts
the corresponding synthetic perfect depth D, while reconstructing the synthetic-
style RGB image I,:

Z.=E.(X,), Y.=D,Z,), Y.=/{I,, D} (3)

Similarly, in another cycle, based on the generated {1,., D,.} and {I,, D,}, respec-
tively, our framework further generates the synthetic {I., D’} and real domain

{I/, D!}, which are then used to compute the consistency loss.

2.3 Airway Structure Awareness Loss

Unlike general endoscopic or natural scenes, where depth cues rely on tex-
ture variations [17,29], bronchoscopic images have a monotonous lumen texture
with low saliency [14], making pixel-wise depth learning prone to errors. A key
anatomical prior in bronchoscopy is that airway depth should increase as the
lumen extends further into the respiratory system [1], yet standard depth esti-
mation models fail to enforce this, leading to inconsistent predictions. To address
this, we introduce the Airway Structure Loss, which encourages lower disparity
values in the airway lumen by leveraging intensity-based segmentation.

The airway region is defined using a grayscale threshold T" on the grayscale-
translated image /gray, forming a binary mask Mairway that identifies the airway
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lumen Mairway = (Igray < T'). The mean disparity in airway and non-airway
regions is computed as:

32D - Mairway) 3D - (1 = Majrway))
Dairwa = a5 . Dnon—airwa = . 4
i Z Mairway + € Y Z(l - Mairway) +e ( )

To enforce anatomical consistency, we use a RelLU-based formulation to penalize
cases where the airway disparity exceeds the non-airway disparity:

Eairway =K [maX(O, Dairway - Dnon—airway)} . (5)
The total optimization objective is:

£total = /\advﬁadv + /\Cycleﬁcycle + /\identityﬁidentity + )\airwayﬁairwaya (6)

where L,qy is the adversarial loss for realistic image translation [13], Leycle en-
sures bidirectional cycle consistency, Lidentity preserves identity mappings, and
Lairway enforces depth consistency within the airway lumen. Leycle and Lidentity
are computed using L1 loss.

3 Experiment

Our model is trained on an NVIDIA RTX 3080 using PyTorch, and utilizes
9,500 synthetic image-depth pairs (Section 2.1) and 55,000 real bronchoscopic
images (Fig. 2a) with pseudo-depth from DepthAnything [26]. Training runs for
30 epochs with a batch size of 2, chosen to reduce GPU memory consumption
during training, and a learning rate of 0.0001. The weighting factors are set as
follows: Aadv = 5, Acycle = 1, Aidentity = 1, and Aajrway = 0.5. During inference,
our model runs at 60 FPS, achieving online real-time performance.

We compare our framework with existing depth estimation methods, in-
cluding bronchoscopy-specific approaches and general foundation models: 1)
3cGAN [2]: A CycleGAN-based method for manually rendering synthetic images.
2) DepthAnything [26]: A foundation model trained on large-scale unlabeled
data for monocular depth estimation. 3) DepthAnythingV2 [27]: An improved
version of DepthAnything. 4) EndoDAC [6]: An adaptation of DepthAnything
for endoscopy. 5) EndoOmni [23]: An adaptation of DepthAnything leveraging
annotated data, with an extended dataset for bronchoscopy. For foundation mod-
els, we use their largest versions, but for EndoOmni, we evaluate both the base
(B) and large (L) versions for a comprehensive comparison.

We evaluate depth prediction using two evaluation strategies: (i) Airway
Depth Structure Evaluation: Standard depth metrics prioritize pixel accu-
racy [8] but often neglect anatomical consistency in bronchoscopic navigation [2].
We propose a depth structure evaluation assuming the airway lumen is the deep-
est region in bronchoscopic imagery [1], assessing: 1) the localization of the lowest
depth regions and 2) the depth contrast between lumen and non-lumen regions.
Lowest Depth Localization Accuracy (LocalAccu): A well-trained model should
predict the lowest depth within the lumen, not along airway walls. Given a
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Fig.2. (a) The experimental setup for data collection with ex-vivo human lung. A
commercial bronchoscope (Ambu aScope 4 ,Ambu Ltd.) is used by an expert broncho-
scopist to navigate the lung. The collection fits the appropriate institutional ethical
process. (b) Airway lumen segmentation from our dataset, providing essential ground
truth for Airway Depth Structure Evaluation. (¢) Qualitative comparison of our model’s
depth estimation results (disparity). The predicted depth map clearly highlights the
airway lumen and captures fine anatomical details around airway branches.

predicted depth map D and airway mask Mjymen, the minimum depth value is
Dpmin = min(D). To assess alignment with the airway lumen, we compute the
proportion of pixels where D = D ;, within Mjumen:

Rin-lumen = ZH(D — Dmin) © Mlumen . (7>
STI(D = Dpin) + €

Here, Miymen is a binary mask indicating the airway lumen, I(-) is an indica-
tor function, and € prevents division by zero. If Rj,jumen > 0.99, the model is
considered to have correctly localized the lowest depth inside the lumen.
Depth Contrast Consistency (DepthCon): We also assess whether the predicted
depth distribution reflects airway structure by computing the mean depth inside
and outside the lumen as Diymen = . DO Miumen/ (Y- Miumen+€) and Doutside =
S>> DO (1= Muumen)/ (O (1 — Miymen) + €), respectively. To quantify the contrast,
we compute the z-score:

7 _ Dlumen - Doutside
lumen-outside — ) (8)
Ooutside T €

where ooutside 1S the depth standard deviation outside the lumen. A sufficiently
negative Ziymen-outside (1-€., < —1.00) confirms the lumen is significantly deeper.

To address the lack of a dedicated dataset for this evaluation, we create and
will open source a segmentation dataset based on five navigation sequences in an
ex-vivo human lung (Fig. 2a), comprising over 20 minutes of data recorded at 2.5
fps, totaling 3,437 frames. Each frame is manually prompted and automatically
segmented using SegmentAnythingV2 [21] to identify the airway lumen (Fig. 2b).
(ii) Classic Depth Performance Metric: We benchmark our framework
on the Visentini-Scarzanella et al. [24] dataset, comprising 16 videos (39,599
frames) of a bronchial phantom with ground-truth depth and CT renderings.
Following prior work [6,23], we evaluate performance using median alignment
post-processing between predicted depth and ground truth, followed by standard
depth metrics: Abs Rel, Sq Rel, RMSE, RMSE log, and threshold accuracy (9).
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Table 1. Comparison of Airway Depth Structure Evaluation on our collected dataset
and Classical Performance on the phantom dataset [24]. DA: Depth Anything. w/o
CycleGAN: Supervised directly using real images with pseudo-depth and synthetic
images with depth. w/o Lairway: Excludes Lairway from the optimization process.

Methods Structure Evaluation Classical Performance
DepthCont LocalAccut |AbsRel | SqRel | RMSE | RMSEj,q L 071
3cGAN |[2] 99.27 57.00 0.33 7.79 15.67 0.35 57.84
DA [26] 70.55 45.64 0.24 4.21 12.98 0.27 64.25
DA-V2 [27] 60.88 51.70 0.21 3.72 12.02 0.25 68.52
EndoDAC [6] 34.58 14.18 0.27 5.56 14.13 0.30 63.31
EndoOmnig [23] 96.53 58.19 0.18 2.99 10.66 0.21 75.56
EndoOmniy, [23] 96.09 45.79 0.18 2.77 10.27 0.21 76.54
Ours 97.27 62.36 0.23 4.56 12.26 0.25 70.64
w/o CycleGAN 68.36 25.36 0.33 7.76 16.16 0.35 56.89
w/o Lairway 96.67 52.06 0.29 6.12 14.60 0.31 59.23
RGB Frame Ground Truth EndoOmm‘Large Ours RGB Frame Ground Truth EndoOmni (Large) Ours
§ =90.67 § =85.17

Fig. 3. Qualitative comparison of our model’s depth estimation (1/disparity) on phan-
tom data [24]. Our model preserves structural consistency, accurately capturing airway
depth, especially at bifurcations. However, pixel-level metrics overlook ground truth
inaccuracies (e.g., misassigned depth in extended lumen regions), limiting its apparent
performance (e.g., ) despite improvements.

Airway Depth Structure Evaluation Table 1 shows that our method achieves
strong performance in our proposed structure evaluation, with 97.27% Depth-
Con and 62.36% LocalAccu, outperforming most existing methods. Although
3cGAN [2] achieves slightly higher DepthCon, our method provides more bal-
anced performance, enhancing anatomical consistency and benefiting airway re-
construction. Notably, EndoDAC [6] performs poorly, underscoring the need for
airway-specific priors in foundation models. Fig. 2c illustrates our model’s per-
formance, capturing anatomical details around the lumen and airway branches.

Classical Depth Estimation Performance Table 1 compares our method
with existing approaches, showing comparable performance. The limited im-
provement is largely due to low-quality ground truth from phantom data, which
fails to capture real-world bronchoscopic complexity. As shown in Fig. 3, the
ground truth often misassigns depth in extended lumen regions or overlooks
bifurcations, leading to inaccurate evaluations. Despite this, our method gener-
alizes well, performing comparably to other foundation models.

Ablation Analysis Table 1 assesses component contributions. Removing Cy-
cleGAN (w/o CycleGAN) degrades performance, showing its role in domain
adaptation. Excluding airway structure awareness loss (Lairway) Weakens struc-
tural preservation, emphasizing its importance for anatomical consistency. Both
components are crucial for achieving anatomically consistent depth predictions.
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4 Conclusion

We propose BREA-Depth, a bronchoscopic depth estimation framework that in-
tegrates airway-specific geometric priors into foundation model adaptation. By
incorporating a Depth-aware CycleGAN and an Airway Structure Awareness
Loss, our approach enhances depth consistency and anatomical realism, outper-
forming existing methods in structural preservation, as validated by our Airway
Depth Structure Evaluation. Our results highlight the limitations of current eval-
uation metrics, which emphasize pixel accuracy over anatomical consistency, and
the challenges posed by low-quality ground truth in existing datasets. To address
this, we introduce new evaluation metrics tailored to bronchoscopic depth esti-
mation. Future work includes establishing a bronchoscopic depth benchmark
with our synthetic data and integrating camera pose [7] and landmark recogni-
tion [25] to refine our metrics by reducing potential bias across viewing angles.
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