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Abstract. Accurate organ segmentation is crucial for prostate cancer
radiotherapy, but cone-beam computer tomography (CBCT) based mod-
els are hindered by low image quality and annotation scarcity. Existing
approaches rely on deformable registration, which struggles with soft-
tissue deformations, or direct CBCT training, which suffers from do-
main shifts and low-quality labels. We propose a domain adaptation
framework that enables robust prostate segmentation on CBCT using
cross-modality supervision from planning CT (pCT). A cycle-consistent
generative adversarial network translates pCT into synthetic CBCT, en-
abling segmentation models to train on high-quality pCT-derived anno-
tations while adapting to CBCT characteristics. Additionally, anatomy-
aware augmentation enhances robustness to organ deformations across
diverse patient anatomies. Using a multi-center dataset, our approach
achieves segmentation accuracy comparable to pCT-trained models. By
eliminating the need for manual CBCT annotations, our method enables
practical Al-driven segmentation for adaptive radiotherapy.
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1 Introduction

Accurate organ delineation is crucial for prostate radiation therapy (RT), as con-
tinuous anatomical changes require frequent dose adaptations to precisely target
the prostate while minimizing radiation exposure to surrounding healthy tissues
[6,14]. Cone-beam computed tomography (CBCT) is widely used for treatment
adaptation, but its low image quality and poor soft-tissue contrast make or-
gan delineation time-consuming and error-prone [16,11]. Furthermore, soft tis-
sue deformations occurring during the lengthy contouring process can render
delineations outdated before treatment begins [20]. The lack of high-quality an-
notations and inherent imaging challenges hinder the adoption of Al-driven seg-
mentation in clinical workflows.

Existing automated solutions fall short in addressing these challenges. De-
formable image registration, which transfers segmentations from planning CT
(pCT) to CBCT, is unreliable in cases of strong local soft-tissue deformations,
as it requires regularization to avoid unrealistic warping [2,19]. Convolutional
neural networks (CNNs), particularly nnU-Net [7], have demonstrated strong
performance in medical image segmentation, but training a reliable model re-
quires large, well-annotated datasets — an obstacle for CBCT due to the lack of
high-quality ground truth (GT). Monte Carlo simulations can bridge the pCT
and CBCT domains for CNN training [1], but they are complex, device-specific,
and prone to modeling errors. Another approach involves using CycleGANs to
generate synthetic CTs or MRIs from CBCTs to aid in automatic organ at risk
contouring [5,3]. However, this method remains fundamentally limited as it at-
tempts to generate high-quality or different-domain images from inherently low-
detail input data.

In this work, we propose a cross-modality supervised domain transla-
tion framework for prostate segmentation in CBCT, addressing challenges of
low image quality and annotation scarcity. Instead of enhancing CBCT quality,
we generate synthetic CBCT (synCBCT) from pCT using a CycleGAN-based
pCT — CBCT translation. This allows us to train segmentation models on
synCBCT while leveraging high-quality pCT-derived annotations. Additionally,
anatomy-aware augmentation [9] enhances robustness to soft-tissue defor-
mations, ensuring reliable segmentation in real-world clinical scenarios.

We are the first to introduce this cross-modality-supervised learning paradigm
for CBCT segmentation, effectively bridging the domain gap without requiring
manual CBCT annotations. By combining generative modeling with robust aug-
mentation strategies, our method facilitates clinically viable Al-driven segmen-
tation for adaptive radiotherapy, reducing annotation burden while improving
treatment precision.

2 Methods

Our key innovation is providing high-quality, pCT-derived ground truth (GT) for
training segmentation networks on CBCT), as outlined in Fig 1. To achieve this,
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we use the pCT — CBCT branch of a CycleGAN that degrades high-quality pCT
images into synthetic CBCT. This fully learnable strategy avoids the pitfalls of
simulation- and deformation-based methods. We then train the nnU-Net, a state-
of-the-art medical segmentation network, using synCBCT images generated from
pCT while transferring the original pCT segmentations as GT. This approach
allows the network to leverage high-quality pCT annotations while operating in
the CBCT domain. As a result, our method bridges the domain gap without
compromising segmentation quality.

High-quality pCT Cross-Modality Training Low-quality CBCT

' In-House (unannotated)
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Fig. 1. Our proposed framework addressing annotation scarcity on low-quality CBCT
images. By combining generative modeling with robust augmentation strategies, our
method facilitates clinically viable Al-driven segmentation for adaptive radiotherapy.
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2.1 Characteristics of Datasets

Our study includes 56 images from 6 institutes as detailed below. All images
used in the study were resampled to an in-plane spacing of 0.875 mm and a slice
thickness of 2.5 mm. TotalSegmentator [21] was used to extract the body con-
tour and remove the imaging or treatment table. Organ contours included in the
study were: femur, bladder, rectum, penile bulb, prostate, and seminal vesicles.

SPARK & Gold Atlas — pCT images from two external open access
datasets, SPARK [8] and Gold Atlas [13] were used. 2 out of 5 treatment centers
(4+3 patients) from the SPARK dataset were included for the study with the
criterion that prostate contours exist and are separated from the seminal vesicles.
All 3 centers from the Gold Atlas dataset were represented by 19 (8+7+4) pa-
tients. Contours associated with the Gold Atlas were delineated on MRI, and the
pCTs were deformably registered to the same MRIs, while the SPARK dataset
contained organ structures that were contoured directly on the pCT. The dis-
tance between the prostate and penile bulb was measured to assess compliance
with ESTRO guidelines, which specify a minimum separation of 1 cm between
these structures. The mean prostate-penile bulb distance was 12.0 + 4.8 cm,
with 8 patients (42.1%) failing to meet the minimum separation requirement.

Unannotated in-house pCT and CBCT - 27 prostate cancer (PCa) pa-
tients treated with Ethos™ (Varian - A Siemens Healthineers, Palo Alto, CA)
at the DKFZ were chosen for the study. A pCT and three equally spaced fraction
CBCT images from each patient were used for network training.

Annotated in-house CBCT — Three CBCTs from separate patients treated
with Ethos™ at the DKFZ were contoured by a medical student (F.E.) following
ESTRO ACROP delineation guidelines [16], under a standard procedure devel-
oped with guidance from a senior radiation oncologist (F.W.) to ensure proper
interpretation and application. The University Hospital Heidelberg ethics com-
mittee approved the study (S-511/2023), with informed consent from all patients.

2.2 Experimental Setting & Evaluation for Two Key Questions

1. Can CBCT with enhanced GT provide as much information for
model training as high-quality pCT? — We train two segmentation models
using the same pCT-contoured ground truth: one on pCT images and another on
synCBCT images generated via the pCT — CBCT branch of CycleGAN. This
ensures that the only difference in training is the information content within
the imaging domain. The model trained on pCT serves as an upper performance
bound, while the model trained on low-quality CBCT with enhanced GT aims to
match its performance. Additionally, we increase model robustness by simulating
soft tissue deformations during model training [9] and we optimize its parameters
on the pCT training. We use an independent test set from a single center in the
SPARK dataset for evaluation - original pCT images for the model trained on
pCTs and synCBCT images for the model trained on synCBCTs.
2. Can our method achieve competitive performance on clinical data?
We evaluate our segmentation models on three increasingly difficult cases with
distinct properties from our independent [ annotated in-house CBCT dataset.
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— Slim patient with moderate beam hardening artifacts
— Patient with prostate growth into the bladder
— Obese patient with severe beam hardening = barely visible organ contours

This dataset serves as a clinical validation and also helps determine whether
training directly on CBCT is necessary or if pCT-trained models suffice.
Evaluation Metrics Quantitatively, we evaluated the CycleGAN network per-
formance using structural similarity, mean squared error, and Jensen-Shannon
divergence. In all cases, the generated images were closer to the target modality
than to the input. Qualitatively, we visually inspected the generated images, con-
firming their anatomical fidelity and realism. To evaluate the segmentation model
performance and assess label similarity and distance we used three metrics: vol-
umetric overlap using the Sgrensen-Dice coefficient (DICE) [4,18], fraction of
deviation larger than 2mm using surface DICE (sDICE) as defined in [12], and
95th percentile distance between two contours using Hausdorff distance (HD)
in mm [15]. The metrics were calculated for three structures: prostate, rectum,
and bladder. To ensure clinical relevance, we limited the evaluation to image
slices within the typical extent of the prostate planning target volume in radio-
therapy in the inferior and posterior directions (7-10 mm) [11]. Due to truncated
rectum segmentations in our development dataset, we set the inferior limit to
the maximum extent of the prostate contour. We also evaluate adherence to the
ESTRO guidelines [16], particularly regarding the distance from the prostate to
the penile bulb.

2.3 Model Training of the Proposed Strategy

Domain-translation Network Training — pCT and CBCT images from the
unannotated in-house dataset were split into a training set (22) and a test
set (5). Three equally spaced fractions from each patient were used as a form of
data augmentation. CT-values were clipped to [-1000, 2000] HU and normalized
to [-1, 1] for training. A 3D generative neural network for unpaired image-to-
image translation (3DCycleGAN) was used for synCBCT generation based on
the original work [22]. A ResNet-based generator and a Markovian discriminator
were used as the network backbone. Network was trained on randomly selected
patches of size (256, 256, 32). Postprocessing steps included predicting overlap-
ping patches, averaging the values in the overlapping regions, and renormalizing
the images to [-1000, 2000] HU.
Segmentation Network Training — The 29 patients were stratified by med-
ical center and available GT structures into a training set (4 from ! SPARK
center#4, 19 from = GOLD ATLAS all of the 3 centers) and a test set (3 from
SPARK center#5 and 3 from B annotated in-house). The test set included
the prostate, bladder, rectum, and penile bulb, while the training set also in-
cluded the femur and seminal vesicles. Images were global z-score normalized
using nnU-Net preprocessing. 3D nnU-Net models were trained in 5-fold cross-
validation (5fCV), adopting the anatomy-informed augmentation [9] to enhance
robustness against organ deformations. Hyperparameters for the deformations
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were optimized based on 5fCV results. In the final model, either rectum or blad-
der deformations were applied with a 7.5 % probability each, using a Gaussian
kernel o = 8 and deformation amplitude sampled uniformly in C' = [-75,75].
Postprocessing was done by the nnU-Net pipeline.

We make our code publicly available in the repositories {https://github.com}
/DKFZ-OpenMedPhys/3DcycleGAN & /MIC-DKFZ/anatomy informed DA.

3 Results

The first part of our results aims to answer the first research question we posed in
Section 2.2. Incorporating rectal and bladder deformations during model training
shows improved or unchanged 5fCV segmentation performance, see Table 1.
Models trained on pCT and synCBCT with enhanced GT perform comparably
(see Table 2), even with slight HD improvements. Our method is just 0.01 below
the upper bound in all DICE and sDICE metrics, except for prostate sDICE.

Table 1. Model training on pCT with and without simulating organ deformations

Training with Prostate Rectum Bladder

organ deform. HD sDICE DICE HD sDICE DICE HD sDICE DICE
No 5.0 0.63 0.83 73 065 0.79 4.7 0.80 0.88
+1.2 +0.12 +£0.06 £2.8 =£0.15 +0.08 +3.5 +£0.10 £0.06
5.0 0.64 0.83 6.9 0.66 0.79 4.6 0.81 0.89
+1.2 £0.11 £0.05 +2.5 4+0.15 +£0.08 £3.2 +0.10 +0.06

Yes

Table 2. Segmentation results and differences on the independent @ SPARK center
#5 between the pCT-trained model (upper bound) and the synCBCT-trained model
with enhanced GT (proposed)

Training Prostate Rectum Bladder
Modality HD sDICE DICE HD sDICE DICE HD sDICE DICE
pCT 42 0.63 0.84 3.3 090 0.89 42 0.83 0.89
(upper bound) =+0.6 +0.09 £0.01 +1.0 +0.06 +0.01 +2.4 +0.10 £0.06
synCBCT 4.1 059 0.83 3.0 089 0.89 4.2 082 0.88
(proposed) +0.4 +0.09 £0.02 #£1.1 40.09 +0.02 +2.3 +£0.11 +0.07
Difference 0.1 0.04 0.01 0.3 0.01  0.00 0.0 0.01 0.01

To address the clinical need and viability of our proposed method (second re-
search question in Section 2.2), we compare the performance of models trained
on synCBCT with enhanced ground truth against those trained on planning
CT, on an [ annotated in-house dataset. The synCBCT-trained models demon-
strate significant improvements in prostate and rectum segmentation across all


https://github.com/DKFZ-OpenMedPhys/3DcycleGAN
https://github.com/MIC-DKFZ/anatomy_informed_DA

Cross-Modality Supervised Prostate Segmentation on CBCT 7

Table 3. Segmentation results on the Il annotated in-house dataset (CBCT) for the
pCT-trained model and the synCBCT-trained model with enhanced GT (proposed)

Training Prostate Rectum Bladder
Modality HD sDICE DICE HD sDICE DICE HD sDICE DICE
pCT 88 043 0.75 7.7 076  0.83 2.8 091 0.94

+3.6 +£0.23 £0.11 +£6.4 +0.14 +£0.05 +1.2 +0.06 +£0.03
synCBCT 7.2 0.50 0.78 7.5 0.79 0.83 44 086 0.87
(proposed) +2.4 40.23 £0.10 +4.3 +0.04 £0.01 +3.2 +0.04 +0.05

Table 4. Segmentation results of the Il annotated in-house dataset case-by-case anal-
ysis for a synCBCT-trained model

In-house Prostate Rectum Bladder

patient HD sDICE DICE HD sDICE DICE HD sDICE DICE
#1 6.6 0.62 0.83 12.5 0.75 0.83 2.5 091 0.93
#2 50 0.65 0.85 5.1 0.78 0.82 8.3 0.83 0.86
#3 9.8 0.23 0.66 5.0 0.83 0.85 2.5 0.85 0.83

evaluation metrics, while planning CT-trained models show superior bladder
segmentation (Table 3). Observing the results on a case-by-case basis Table 4
shows variable results which will be further discussed in Section 4.

The prostate-penile bulb distance for the synCBCT-trained model was 10.0+
4.7 mm for the =" SPARK center #5, while 10.0 4 2.5 mm for the [ annotated
in-house dataset.

Patient #1 Patient #2 Patient #3
Moderate beam hardening Bladder-invading prostate Severe beam hardening

)

Fig. 2. Visualization of segmentation results for three patients from the annotated in-
house dataset. The top row highlights case characteristics, while the bottom row shows
predicted contours (lines) overlaid on the ground truth (shaded regions).

4 Discussion

The integration of Al-driven segmentation into adaptive radiotherapy workflows
presents several technical challenges, particularly regarding the quality and avail-
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ability of training data in CBCT imaging. While previous approaches have relied
heavily on manual annotations of low-quality CBCT images, this work explores
an alternative strategy using domain adaptation. The following discussion ex-
amines our findings through several key aspects: the impact of synthetic training
data on segmentation accuracy, the role of organ deformation in model robust-
ness, and the potential clinical implications of our framework.

Robust Performance Approaching the Upper Bound - Research ques-
tion No. 1 — The segmentation model trained on synCBCT with enhanced GT
achieved performance comparable to the model trained on high-quality pCT,
showing either no difference or competitive results. This suggests that the model
effectively extracted sufficient features to compensate for lower image quality.
While pCT and CBCT share the fundamental physics of X-ray attenuation, they
differ in their acquisition parameters, scatter contributions, and reconstruction
methods. Both modalities present challenges in soft-tissue contrast compared to
MRI, particularly in the pelvic region, though CBCT typically exhibits lower
contrast-to-noise ratio and increased scatter artifacts compared to pCT [17,10].
The model’s ability to perform well despite these differences may be attributed
to the high-quality labels used during training. Additionally, incorporating organ
deformations due to bladder and rectal size variations improved segmentation.

Promising Clinical Feasibility Assessment - Research Question No. 2
The superior prostate segmentation performance of our model on the annotated
in-house CBCT dataset suggests that models trained on target domain data may
offer advantages for prostate segmentation compared to models trained on pCT.
Although the cases were considered challenging, these findings should be consid-
ered early indicators rather than definitive conclusions given the limited sample
size. Performance across OARs was mixed: rectum segmentation showed poten-
tial improvements, while bladder segmentation remained comparable to SPARK
dataset results. Case-by-case analysis revealed that the model handled moderate
beam hardening artifacts, and bladder-invading prostate growth well, but strug-
gled with severe imaging artifacts. These findings align with expectations given
the limited size of the development set, where such complex cases were likely
underrepresented. The observed performance trends are promising, further mo-
tivating future research with expanded training data. In addition to segmentation
accuracy, inference speed and integration into clinical workflows are critical for
real-world adoption. During deployment, only the segmentation network oper-
ates on CBCT5, yielding inference times <30s/CBCT on an NVIDIA RTX 2080
(<10.7 GB). This is substantially faster than approaches requiring sequential
synthesis and segmentation, aligning well with the clinical demands of prostate
RT where minimizing on-table latency is crucial to prevent anatomical changes
that can quickly render images outdated.

Compliance with ESTRO ACROP guidelines — Segmentation models pre-
dicted prostate and penile bulb structures with distances that generally complied
with the ESTRO ACROP guidelines for both the SPARK and in-house datasets,
though some individual cases violated the minimum required distance. This sug-
gests that the models learned the spatial correlation of structures to the extent
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allowed by the training data. Therefore, training the models on fully ESTRO
ACROP-compliant data is likely to yield compliance on the evaluation dataset.

5 Conclusion

This paper aims to facilitate clinically applicable Al-driven prostate and organ-
at-risk segmentation for adaptive radiotherapy by overcoming the annotation
burden on low-quality CBCT images, ultimately improving treatment precision.
To achieve this, we proposed a domain adaptation framework that enables train-
ing on synthetic CBCT images using high-quality pCT-derived annotations while
accounting for organ deformations by incorporating them into the training to en-
hance the robustness necessary in daily clinical practice. Our training strategy
demonstrated promising results comparable to models trained on high-quality
images and demonstrated the feasibility of clinically viable Al-driven segmenta-
tion for adaptive radiotherapy on a set of challenging clinical cases.
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