MICCA1  "epubinedvesion

Multi-Linear 3D Craniofacial Infant Shape Model

Till N. Schnabel', Yoriko Lill?>3, Benito K. Benitez??3, Gaspard Krief?,
Sebastian Tapia Corén?3, Friederike Priifer*, Philipp Metzler®®, Andreas A.
Mueller?3, Markus Gross!, and Barbara Solenthaler!

! Department of Computer Science, ETH Zurich, Switzerland
till.schnabel@inf.ethz.ch
2 QOral and Craniomaxillofacial Surgery, University Hospital Basel and University
Children’s Hospital Basel, Switzerland
3 Facial and Cranial Anomalies Research Group, Department of Clinical Research
and Department of Biomedical Engineering, University of Basel, Switzerland
4 Department of Radiology, University Children’s Hospital Basel, Switzerland
5 Clinic for Oral and Maxillofacial Surgery, Cantonal Hospital Aarau, Switzerland
5 Center for Dental Medicine, University of Zurich, Switzerland

Abstract. After birth, the cranium and facial skeleton undergo rapid
growth. Routine postnatal assessment is crucial for the early identi-
fication of craniofacial deformities, often characterized by asymmetric
growth patterns. However, a comprehensive 3D shape model capturing
both soft tissue and bony structures during early craniofacial develop-
ment does not yet exist. We introduce the first integrated 3D shape
model of the infant head and skull, constructed from a large dataset
of photogrammetric scans complemented by a smaller set of computed
tomography scans. Our INfant CRANial (INCRAN) model captures de-
tailed facial expressions and overall cranial shape variations, incorporat-
ing the most advanced representation of cranial sutures on the under-
lying skull to date. By mapping cranial measurements to the model’s
latent space, we further distinguish various craniofacial deformities from
normal shape variations, enabling automated diagnosis and correction
proposals. Additionally, we propose a novel method for constructing a
multi-linear model from an uncontrolled expression space by project-
ing an autoencoder back into PCA space, thus enhancing model inter-
pretability. INCRAN supports growth monitoring and holds potential for
improving infant healthcare and craniofacial treatment strategies.
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1 Introduction

Routine postnatal assessment of cranial and facial growth is essential for early
detection of abnormalities. Craniofacial deformities are characterized by asym-
metric growth, most commonly due to positional head deformities. These must
be carefully distinguished from the more severe craniosynostosis to ensure accu-
rate diagnosis and appropriate management [20]. While traditional assessments



2 T. Schnabel et al.

primarily rely on two-dimensional cranial measurements, recent research suggests
that volumetric comparisons enabled by three-dimensional (3D) scans provide
a more comprehensive analytical framework [19]. However, manual 3D analysis
can be labor-intensive and complex to implement in clinical routine, and treat-
ment planning remains highly subjective. 3D morphable shape models [5,13,7]
provide a compact representation of complex 3D shape variations, thus enabling
detailed and more objective analyses of cranial structures. While several high-
quality full-head and skull models have been developed for adults [1, 17], research
on the infant cranium remains limited, with only a few models focusing solely on
the skull [14, 25, 15] or on the soft-tissue cranium [26, 21, 8], and, to the best of
our knowledge, just one model specifically addressing the infant mandible [16].
Our INfant CRANial (INCRAN) model is the first to combine the infant
skull, mandible, and soft-tissue cranium, thus capturing important correlations
between these domains, including the fusion of important sutures. Moreover,
our common mesh topology was designed to perform the common medical mea-
surements mentioned above in an automated fashion and linearly correlating
them with the PCA space, thus allowing for continuous cranial shape variation
and correction, facilitating planning for possible treatments. Lastly, we present a
new method to build a multi-linear PCA model from an uncontrolled expression
space, using a linear autoencoder that is reprojected to disentangled PCA spaces
after training, making INCRAN the most expressive, complete, and interpretable
infant cranial shape model to date. In summary, our main contributions are:

— The first 3D shape model to combine the infant head and skull, which will
be made accessible for research purposes.

— The first skull model to capture the course and fusion of all major cranial
sutures while combining the cranium with the mandible.

— A multi-linear head model that increases interpretability compared to pre-
vious infant models by disentangling identity, expression, and time.

— Discussion of potential medical applications, including growth analysis, skull
inference, and a diagnosis and correction of several cranial malformations.

2 Methodology

We begin by discussing the datasets and the registration process used to align the
data before applying PCA for dimensionality reduction. We then describe our
use of linear regression to join head and skull shape spaces, and to additionally
correlate cranial attributes. Finally, we present our method for constructing a
multi-linear PCA model from an uncontrolled expression space.

2.1 Data Acquisition and Processing

From the University Hospital Basel and Cantonal Hospital Aarau, we collected
and labeled a dataset of 2381 full-head photo scans of 829 different infants aged
8 + 6 months, primarily undergoing helmet therapy for positional plagiocephaly
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Fig. 1: Five different views of our average skull model (top younger, bottom older)
are visualized, demonstrating the age-related fusion of the fontanelle and other
important sutures. The coloring highlights disconnected mesh components, and
the spheres represent landmarks in red and curvilinear feature points in blue.

or brachycephaly [11]. Scans were acquired using the Vectra M5 scanner, which
computes a textured triangular mesh from five simultaneously captured images
— two frontal, two posterior, and one top-down. Each mesh was annotated with
up to 50 landmarks and 78 curvilinear feature points, along with segmentation of
erroneous regions to be excluded from registration [22]. To ensure consistent and
interpretable correspondence across all meshes, we applied an extended nonrigid
iterative closest point (NICP) algorithm [2]. In addition to registering facial
landmarks, a subset of featureless scalp points was aligned to planes defined
by the nasion and two tragus points [24]. During each NICP iteration, these
points were weighted more heavily to constrain them to their respective planes,
enabling automated cranial symmetry and volume distribution measurements
on all registered meshes. The ears were generally excluded due to incomplete
scanner capture. We refer to this initial set of registered head meshes as Viyj;.

Additionally, we retrospectively obtained 117 CT scans of infants aged 19+12
months from the database of the University Children’s Hospital Basel. Most
scans were conducted for suspected head trauma but were later deemed healthy,
while the remaining 6 cases involved craniosynostosis. Both the photo and CT
datasets maintain equal gender distribution, with a strong predominance of Cau-
casian ethnicity. CT volumes were converted into triangular surface meshes via
automatic density thresholding with manual refinements. Soft tissue meshes were
labeled similarly to the photo scans, whereas skull meshes were annotated with
up to 134 landmarks and 226 curvilinear feature points. Given that certain cra-
nial sutures remain open for months or years post-birth, these labels trace all
major sutures, marking their course along opposing borders [14]. The skull tem-
plate, designed by an artist and registered via NICP, consists of multiple dis-
connected components that deform independently to align with each suture’s
boundary. For fused sutures, adjacent component boundaries were constrained



4 T. Schnabel et al.

with fully stiff virtual edges, while for open sutures, boundary points were drawn
to a cubic-spline interpolation between corresponding suture border landmarks.
The skull template, along with its disconnected components and labels, is visual-
ized in Figure 1, and further animations of its registration process are illustrated
in our supplementary video. We refer to the initial set of registered head and
skull pairs from this CT dataset as C/’;, and C;,;,, respectively.

init init»

2.2 3D Head-Skull Model

init’ “init
undergo joint alignment via generalized Procrustes analysis [10] to the soft-

tissue scalp on the template, serving as a rigid reference. The aligned meshes are
compressed via PCA, which is used to fill missing regions [3], thus improving
alignment between bone and soft tissue. This alignment, model construction,
and region filling process iterates until convergence, producing an adjusted set
of registered head and skull meshes {Ch,CS}. The same procedure is applied
separately to the photo dataset Vi, yielding V. With all meshes aligned and
filled, we construct a head PCA model Py from the combined head dataset
H =C"UV, and a separate skull PCA model Pe- from C°. We refer to Py and
Pes collectively as INCRAN. We selected PCA over a nonlinear model for its
robustness with small datasets like C* and its interpretability from orthogonality
and variance sorting. Moreover, PCA enables training two linear regressors

After registration, head and skull mesh pairs from the CT dataset {C.h 3

fs:PH_>Pcs7 Zh b Zg, (1)

fh : PCS — P’H, Zs > Zp, (2)

to capture head-skull correlations using PCA head projections z; from C" and
corresponding paired skull projections z from C* [6]. Additional linear regressors

fli ZP'H—>R, ZhHWZ(Zh_Zh)zli (3>

are trained to determine the direction w;, of maximum correlation between the
PCA vectors zp, and several important attributes [;, similar to prior work [23,
21, 8], allowing this specific attribute to be varied by changing z, along w;,.

2.3 Linear Disentanglement

In [22], the first infant morphable model was introduced to disentangle identity
and expression spaces with a nonlinear autoencoder, addressing challenges from
uncontrolled infant expressions with a training scheme proposed by [28]. The au-
thors further leveraged longitudinal data to isolate a single-component age space.
We adopt this approach to enhance INCRAN’s interpretability but introduce two
key modifications: First, instead of a single-component age space, we allow multi-
ple components, enabling the model to capture variations beyond average aging,
such as treatment-induced head cranial shape corrections or weight fluctuations.
Second, we use a linear autoencoder to maintain compatibility with the linear
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Fig.2: For each disentangled space, variations along the first two components
are shown on opposite arrow sides. The average cranium is shown in the center.

regressors from (1), (2), and (3). Additionally, [12] demonstrated that linear au-
toencoders trained with Ly reconstruction loss and weight regularization can be
transformed back into a PCA-like space via singular value decomposition, which
restores PCA’s advantages of orthogonality and variance sorting post-training,
preserving interpretability. Formally, we define the disentangled autoencoder

F(@n) = g5(fs(xn)) + 9, (f5(®n)) + ga(fa(®n)) (4)

as a sum of three separate linear autoencoders gs(f3), g, (fy), 9a(fa) for model-
ing identity-, expression-, and time-related factors, respectively. These autoen-
coders are trained jointly in an end-to-end manner, using batches of quadru-
plets where each element captures controlled variations across the three dis-
entangled factors [22]. Each encoder fjc(g 4,0} applies a linear transformation
W{ € R¥Pi to the input vector x; € R?, generating a compact p;-dimensional
representation, which the decoder multiplies with W% € RPi*? to reconstruct
the input. To remove potential correlations between the three spaces, we project
each matrix into the orthogonal complement of the other two: W%l = Win
(W§ + le)L Each projected matrix is then reparametrized using thin SVD:
Wg, = U/XIVIT, producing orthogonal weight matrices U7 € RPi*¢ with
columns sorted by variance. The final multi-linear PCA-like model P;Z is ob-
tained by combining these reparametrized decoder matrices into the projection
matrix U = [U'B7 U7, U“]. P; is trained exclusively on the head dataset H, as
the skull dataset C* is too small for training a neural network and lacks intra-
subject scans, which are crucial for disentanglement. However, by correlating the
skull and soft-tissue domains via (1), the disentanglement effectively transfers
to the skull. Figure 2 illustrates the variations encoded in these three spaces, in-
cluding growth and weight fluctuations in the time space, additionally rendering
the coupled skull below the soft-tissue surface.

3 Results and Applications

We evaluate INCRAN’s performance before exploring its potential applications.
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Fig. 3: Model compactness (left), generalization (center), and specificity (right).

3.1 Model Training and Evaluation

Figure 3 evaluates compactness, generalization, and specificity [13] for the single-
space PCA models of the head (Pj) and skull (Pc:), where errors between two
meshes were calculated as the average euclidean distance between corresponding
vertex pairs. Both models were trained on the full dataset for compactness and
specificity, while generalization was assessed via 10-fold cross-validation. As ex-
pected, Py outperforms Pgs in generalization and specificity, with comparable
compactness, due to the substantially larger dataset size. For further analysis,
we limit both models to 64 components, preserving approximately 99.5 % of the
total variance. In the multi-linear model, Pﬂ, the dimensionality of each dis-
entangled subspace was determined experimentally from the eigenvalues of 37,
resulting in 8 components for identity, 32 for expression, and 16 for time. P;Z
was trained on H with a 90/10 train-validation split with the same scheme as
in [22], except for using Lo as reconstruction loss and weight regularization. Ad-
ditionally, early stopping was applied after 300 iterations when the Lo, weight
norm reached its minimum, as continued training led to a further decrease in
reconstruction loss but an increase in the weight norm, which resulted in visual
degradation of the orthogonal latent features U. Consequently, P; exhibits a
notable accuracy loss (0.524+0.11 mm) compared to the uniform PCA model Py
(0.44 + 0.08 mm). Moreover, it does not perfectly separate identity, expression,
and time. For instance, the expression space captures scalp movement, as demon-
strated in our supplementary video, due to the scan-wise registration process,
which does not consider intra-subject correlations. We suspect this contributes
to the relatively low variance allocated to the identity space.

3.2 Growth Analysis

Training the linear regressor from (3) to predict a baby’s age yields a mean abso-
lute error of 2.1+ 4.7 months on V, improving upon the mean-age baseline error
of 3.2+ 5.4 months. On C”, it achieves 4.5+ 3.3 months, which further improves
to 3.6+ 3.0 months when incorporating C", compared to 7.345.1 months for the
mean-age baseline. Although the age distribution in V is smaller and narrower
than in C" (8 46 vs. 19+ 12 months), the predictions still exhibit a larger stan-
dard deviation, potentially because a linear approximation of nonlinear growth
is less accurate for younger infants who grow more rapidly [15]. The improved
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Fig.4: Our model detects in the input (top) and corrects (bottom) positional
plagiocephaly (left) and metopic suture craniosynostosis (right).

accuracy when incorporating the skull data from C® aligns with prior research
showing that skull sutures serve as reliable age indicators [18], as visualized in
Figure 1, where the age is varied in the skull PCA space along w;,, thus showing
the fusion of the fontanelle and other important sutures. The prediction and
variation of age via our model shows potential to make infant growth analysis
more objective and comprehensive. By quantifying 3D cranial development, our
approach supports routine growth monitoring and may help detect deviations
from normative growth trajectories at an early stage. This could prove valuable in
identifying conditions such as craniosynostosis or neurodevelopmental disorders,
where cranial morphology is affected, at an early stage. Furthermore, INCRAN
may support longitudinal tracking of post-surgical outcomes or the evaluation
of therapeutic interventions in infants with diagnosed growth anomalies.

3.3 Diagnosis and Correction of Craniofacial Malformations

We computed key cranial measurements commonly used to assess abnormal skull
shapes [19] across the entire dataset H and trained linear regressors from (3) for
each. Notably, these measurements correlate most strongly with the time space of
the disentangled model P; , likely because most subjects with longitudinal data
underwent treatment for cranial shape correction. The regressors enable auto-
matic prediction of these measurements for new patients, facilitating anomaly
detection and potentially enabling more objective diagnoses of cranial malforma-
tions. Furthermore, the regressors can be used to adjust cranial shapes to bring
any specific or all measurements combined into a healthy range. Figure 4 illus-
trates this process for infants with craniosynostosis and positional plagiocephaly.
Our approach differs from prior work [21, 8] in that it does not apply binary clas-
sification to detect and correct only craniosynostosis, but rather regresses these
key cranial measurements to represent and correct any type of cranial malfor-
mation in a continuous fashion. The corrected cranium could serve as a healthy
reference for clinicians, aiding treatment planning. By also fixing the estimated
age and total cranial volume, we simulate potential treatment interventions for
cranial deformities. For non-surgical treatments, such as helmet therapy [11],
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Fig. 5: Left highlights the regional accuracy of face and skull inference, averaged

over the CT dataset. Right demonstrates skull inference on non-invasive photo
scans for the same baby at three and eleven months.

patient growth could be imitated by incrementally increasing the age direction
and constraining specific head regions while allowing others to develop naturally.

3.4 Face and Skull Inference

Facial reconstruction from skulls is crucial for forensic applications, and INCRAN
extends previous analyses limited to adults [9, 17]. Using (2), we achieve a vertex
reconstruction error of 1.8 + 1.1 mm via ridge regression. Conversely, our model
infers skull structures from soft tissue using (1) with an accuracy of 2.7+1.6 mm.
Figure 5 visualizes the inference error distribution, which is most pronounced at
the sutures, likely due to PCA’s linear approximation of their nonlinear growth
pattern. Skull inference presents a valuable tool for craniofacial malformation
diagnosis and treatment, addressing the challenges of routine skull monitoring,
which is limited by the risks associated with radiation exposure. By enhanc-
ing photogrammetric analysis, it enables noninvasive and clinically informative
monitoring of craniofacial growths, as demonstrated in Figure 5.

4 Discussion and Conclusion

We presented INCRAN, the most comprehensive infant craniofacial shape model
to date, encompassing the skull, mandible, and soft-tissue cranium, featuring
detailed modeling of all major sutures. Additionally, we proposed a novel ap-
proach to constructing a multi-linear PCA model by reprojecting the latent
space of an autoencoder trained to iteratively disentangle identity, expression,
and time variations. Finally, we demonstrated potential medical applications,
including automatic diagnosis and correction planning for craniofacial malfor-
mations. Future work should focus on increasing dataset diversity to mitigate
racial bias. Additionally, expanding the CT dataset, particularly with malformed
cases, could reduce domain shifts between our two datasets and improve preci-
sion of the domain regressors fs, fh, especially in predicting premature suture
fusion in craniosynostosis. With more data, automated labeling methods [27,
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8,4] should be explored, and nonlinear models could further refine the encod-
ing of cranial growth, including closure of the sutures. Moreover, model-based
registration [13] could enhance intra-subject alignment and thus improve the
disentanglement of identity and expression. However, the challenge of defining
a comprehensive identity space, independent of time-related changes, may stem
from a deeper underlying question. We leave the reader to reflect on what truly
constitutes identity, if not its present state in time.
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