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Abstract. Adaptive radiotherapy (ART) improves treatment precision
by adapting to anatomical changes, but its clinical adoption is limited
by high costs, patient burden, and institutional variability. To address
this, we propose a robust multi-omics nomogram for predicting ART
eligibility in nasopharyngeal carcinoma (NPC) patients by integrating
multi-modality Genomap signatures with clinical factors. Using retro-
spective data from 311 patients at Queen Elizabeth Hospital (training
set) and 192 patients at Queen Mary Hospital (external test set), we
extracted 7,956 radiomics features from six regions-of-interest (ROIs)
across contrast-enhanced computed tomography (CECT), magnetic res-
onance imaging (MRI), and dose modalities, alongside 132 geometric
features capturing spatial relationships between ROIs. Feature selection
via LASSO identified 35 radiomic, 8 dosiomic, and 4 geometric features
for analysis. The Genomap model achieved an accuracy of 80% and an
AUC of 90% across modalities, while the integrated nomogram demon-
strated superior performance with 88% accuracy and 96% AUC. Our
results show that Genomap ensures generalizability and robustness, pro-
viding a reliable tool for personalized ART planning in NPC patients.
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1 Introduction

Nasopharyngeal carcinoma (NPC) is a distinctive type of cancer originating
in the nasopharynx, with high incidence rates in East and Southeast Asia, par-
ticularly southern China [3,13]. This geographic disparity is attributed to genetic
predispositions [1], environmental factors [18], and the prevalent Epstein-Barr
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virus (EBV), which are closely associated with NPC pathogenesis [11,16]. The
standard treatment for NPC involves a multidisciplinary approach, including
radiation therapy, chemotherapy, and occasionally surgery [9,14].

Radiation therapy is crucial for managing NPC due to its radiosensitivity.
However, traditional radiation plans, based solely on pre-treatment imaging, of-
ten overlook intra-treatment anatomical changes such as tumor shrinkage and
weight loss, which can significantly alter tumor positioning and morphology [5].
ART marks a significant advancement in NPC treatment, featuring dynamic ad-
justments to radiation plans in response to observed changes during therapy [10].
In clinical practice, ART relies on regular imaging updates (e.g., daily cone beam
computed tomography or weekly magnetic resonance imaging), but these imag-
ing technologies have limitations such as high cost, long processing time, and high
burden on patients. By accurately predicting which patients tend to respond fa-
vorably to adaptive strategies, healthcare providers can tailor treatments more
effectively, improving therapeutic outcomes and reducing unnecessary radiation
exposure.

Radiomics, an emerging field in medical imaging, extracts quantitative fea-
tures from radiological images to reveal disease characteristics imperceptible
to the naked eye, playing a crucial role in predicting ART tasks by providing
detailed textural, shape, and intensity data [2,4]. Recent studies have shown
promising results using radiomics for predicting ART in NPC [8]. More re-
cently, multi-omics—which integrates radiomics, dosiomics, and contouromics
from multi-modality radiotherapy data—has gained attention for its potential to
enhance ART prediction models. For instance, Zhang et al. [17] explored the im-
pact of multi-omics on ART prediction models, improving the AUC to 70%-80%
by addressing data imbalance issues. However, the application of multi-omics
in ART prediction faces significant challenges. Variability in scanners, imaging
protocols, dose calculation algorithms, and structure delineations across differ-
ent institutions can undermine the consistency and reproducibility of multi-omics
features, resulting in prediction models that are not generally applicable across
hospitals [7,15]. This highlights the need for specialized modeling techniques to
enhance the inter-institutional generalizability of omics-based ART prediction
models.

Genomap [6] is a novel modeling technique that can enhance model gener-
alizability by re-representing the multi-omics data in a feature map manner. In
multi-omics analysis, it can control variables through the normalized partial cor-
relation coefficient, explore stronger dependencies between features, and obtain
the optimal order of mapping features to a graph structure based on the Gromov-
Wasserstein calculation. Each sample is then represented in such a map, which
reduces the structural differences in the representation of data from different
institutions.

The contributions of this paper are summarized as follows:

– This study aims to develop a highly generalizable multi-omics model for pre-
dicting the efficacy of ART in NPC patients, utilizing the map-constructing
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module of Genomap [6]. The model was validated both internally and exter-
nally using data from two distinct institutions.

– In this study, the map-constructing module of Genomap was employed to
transform multi-omics data, including CECT, multi-parameter MRI, dose
map, and contour structure, into a unified feature map. Subsequently, a
convolutional neural network (CNN) was used to recalibrate the features,
generating predictive factors that integrate different modalities with clinical
factors for nomogram construction.

– The generalizability of the transformed multi-omics data, as output by the
Genomap module, was evaluated and compared with that of conventionally
adopted machine learning models.

2 Methodology

2.1 Overview

This work proposes a novel approach that integrates the construction of a fea-
ture map and the probability for prediction. As illustrated in Fig. 1, the process
begins with the construction of an interaction matrix of features after feature
extraction and selection, which is then using the Gromov-Wasserstein (GW) to
calculate discrepancy. Subsequently, a CNN model learns a discriminative fea-
ture from this feature map. The feature embeddings extracted from the final
fully connected (FC) layer are then fed into a logistic regression model as input
features for prediction. To enhance interpretability, prediction probabilities are
visualized using a Nomogram.

2.2 Normalized Partial Correlation Coefficient Matrix

Let X ∈ Rm×n represent the feature matrix, where m denotes the number
of patients and n denotes the number of imaging features. Each element xpi

corresponds to the i-th imaging feature of the p-th patient. We represent the
i-th feature across all patients as a column vector Xi = (x1i, . . . ,xmi)

⊤ ∈ Rm.
Our objective is to learn feature interactions through entropy maximization con-
strained by pairwise statistical dependencies.

The covariance matrix Σ is derived from the feature matrix X. Specifically,
the covariance matrix describes the linear relationships between features. For
the feature matrix X, the element σij of the covariance matrix represents the
covariance between the i-th and j-th features, calculated by the formula:

σij =
1

m− 1

m∑
p=1

(xpi − µi)(xpj − µj) (1)

where µi and µj are the mean values of the i-th and j-th features, respectively.
The normalized partial correlation coefficient matrix is derived from the pre-

cision matrix Ω = Σ−1, which encodes the conditional dependencies between
features. Specifically, we compute the normalized partial correlations:
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Fig. 1. Model Workflow Overview. This model includes three key steps: 1) Prepro-
cessing: radiomic features are extracted from image data within ROIs, and geometric
relationships between GTVn and other ROIs are calculated. Feature selection is sub-
sequently performed, resulting in the retention of 6 ROIs from the initial set of 8. 2)
Feature transformation: selected features are processed using Genomap’s modules for
normalization and mapping. 3) Nomogram construction: predictive factors from CNN
feature maps and clinical data are combined to train and generate a nomogram for
prediction.

ρij =

{
− Ωij√

ΩiiΩjj

if i ̸= j

1 if i = j
(2)

These normalized partial correlation coefficients reveal the conditional depen-
dencies between features when other variables are controlled.

2.3 Genomap Construction

We followed the Genomap construction procedure proposed by Islam et al. [6]
to compute the Gromov-Wasserstein discrepancy between the normalized partial
correlation coefficient matrix C ∈ Rn×n and the distance matrix C ∈ Rn×n, n
denotes the embedding dimension. This calculation enables us to determine the
optimal arrangement of features, thereby facilitating the creation of the final
feature map. We define the Gromov-Wasserstein discrepancy between matrices
C and C as follows:

EC,C(T )
def.
=

∑
i,j,k,ℓ

L
(
Ci,k,Cj,ℓ

)
Ti,jTk,ℓ,

GW (C,C,u,v)
def.
= min

T∈Cu×v

EC,C(T ),

(3)

where T denotes the coupling between C and C, u and v encapsulate the relative
importance of positions in the feature and feature maps.



Boosting Generalizability in NPC ART via Multi-Omics Feature Mapping 5

To quantify the discrepancy between two distributions, we adopt the Kullback–
Leibler (KL) divergence as the loss function L. For inputs a and b, the KL
divergence is defined as

L(a, b) = KL(a ∥ b) def.
= a log

(a
b

)
− a+ b. (4)

In this study, we introduced C and C to this loss:

L(C,C)
def.
=

(
L
(
Ci,k,Cj,ℓ

))
i,j,k,ℓ

. (5)

We have EC,C(T ) = ⟨L(C,C) ⊗ T ,T ⟩, where ⊗ denotes the tensor-matrix
multiplication as follows:

L ⊗ T
def.
=

∑
k,ℓ

Li,j,k,ℓTk,ℓ


i,j

. (6)

2.4 CNN Feature Extraction and Nomogram Construction

Based on the optimal arrangement of the feature scheme derived from matrix
T , a feature vector Fi ∈ Rn is generated for each sample, where n denotes
the dimension of the feature vector. By stacking all samples, we obtain the
feature matrix F ∈ Rm×n, where m is the number of samples. The matrix F is
subsequently fed into the CNN model. The weight matrix W ∈ Rn×k represents
the weights of the FC layer in a CNN, where k is the number of neurons in the
layer.

To quantify the contribution of each feature across all samples to the output
of the FC layer, matrix multiplication is performed as Z = F ·W , where Z ∈
Rm×k represents the transformed feature representations for all samples, and k
denotes the number of neurons in the FC layer.

We propose a nomogram derived from a logistic regression model to predict
binary outcomes:

logit(p) = ln

(
p

1− p

)
, (7)

where p denotes the probability of the positive class. This probability is computed
using the logistic regression function:

p =
1

1 + exp (−(Z · β + β0))
, (8)

where β is the weight vector, and β0 is the bias.
In the constructed nomogram, each input factor Zj is represented by a cor-

responding axis that displays its value range. The total score is calculated by
aggregating the weighted contributions of all features, with each contribution
determined by its respective weight βj . The nomogram thus encapsulates the
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Table 1. The number of selected features from each data modality and ROI.

Data Modality ROI Feature Number

MRI (T1)

Ipsilateral Parotid 1
GTVnp 2

Contra Parotid 1

MRI (T2)
Ipsilateral Parotid 3

GTVnp 4
Contra Parotid 3

CT

Ipsilateral Parotid 7
GTVnp 3
GTVn 4

Contra Parotid 7

Dose
Ipsilateral Parotid 2

GTVnp 1
GTVn 5

Contouromics Spinal Cord 3
Ipsilateral Parotid 1

contributions of each feature in Z to the final prediction probability. Each fea-
ture’s influence is scaled by its respective weight β, providing a visual and in-
terpretable summary of the prediction model. This intuitive representation aids
in clinical decision-making by translating the logistic model’s outputs into a
straightforward, visual format.

3 Experiments and Results

3.1 Datasets

Data source institutions: This retrospective study included 503 NPC pa-
tients treated with radiotherapy from Queen Elizabeth Hospital (QEH) for model
training and Queen Mary Hospital (QMH) for external validation. A total of 311
patients treated at QEH from 2012 to 2015 and 192 patients treated at QMH
from 2012 to 2020 were recruited. Radiation oncologists reviewed clinical records
to determine whether each patient received ART. Among the 311 and 192 pa-
tients from QEH and QMH, 111 and 27 received ART, respectively.

Multi-omics: Data collection and feature extraction were performed as fol-
lows: 1) CECT images in DICOM format and MR images were collected from
QEH and QMH. ROIs including GTVp, GTVn, parotid glands, brainstem, and
spinal cord were delineated based on NCCN guidelines [12]. 2) Radiomic fea-
tures were extracted from CECT and MR images for 6 ROIs, resulting in 6,348
features per image, including 84 morphologic features. 3) Dosiomic features were
extracted based on DVH and spatial dose distribution within 6 VOIs, yielding
1,608 features. 4) Contouromics features(132 in total) were calculated to repre-
sent the geometric relationships between four pairs of OIs based on OVH and
POV descriptors.

Selected features: After feature selection, 31 radiomic features from four
ROIs were retained (IpsiParotid, ContraParotid, GTVp, and GTVn), 8 dosiomic
features from three ROIs were selected (IpsiParotid, GTVp, and GTVn), and 4
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Fig. 2. Model Generalizability and Performance. (A) AUC(%) results for QEH
data(training set). (B) AUC(%) results for QMH data (test set). (C) ART predic-
tion accuracy of single-modality features and four baseline models on QEH(training)
and QMH(test) data.

geometric features from GTVn-SpinalCord and GTVn-IpsiParotid remained, as
detailed in Table 1.

3.2 Comparison Results

During training (Fig. 2A), the random forest and XGBoost models over-
fitted the dataset. The remaining two baseline models, though avoiding overfit-
ting, achieved AUC values of 56%–78%. Conversely, Genomap averted overfitting
and maintained stable AUC scores of 83%–97% across all datasets. In testing
(Fig. 2B), Genomap’s AUC scores remained robust at 82%–93%, while other
models exhibited AUC values around 50%. Consistent trends emerged in the
accuracy (ACC) results in Fig. 2C. Although Genomap did not consistently out-
perform all models on every dataset, it achieved the highest training and testing
accuracy on MRI and dose data, with accuracy on the remaining datasets closely
matching the best-performing models.

3.3 Ablation Study

The training data were sourced from QEH, while the testing data were ob-
tained from QMH. Genomap demonstrated remarkable performance and gen-
eralizability across different data sources. During training Fig. 2A, Genomap
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Fig. 3. Nomogram and Model Validation. (A) The nomogram shows the contribution
of six predictors (CECT, Dose, GTVn, MRI, N. stage, and grade) to the total points,
with each feature mapped to a probability score (0–1) indicating ART likelihood. Model
trained on QEH data and tested on QMH data. (B)AUC(%) results for QEH data
(training set). (C) AUC (%) results for QMH data (test set).

achieved an AUC of approximately 96% and maintained high accuracy with
values ranging from 71% on CECT to 80%–90% on other data modalities. In
the testing Fig. 2B, where data were from a different institution, Genomap
consistently achieved approximately 90% AUC across all four data modalities
and maintained high accuracy, peaking at 89% on GTVn. The minimal differ-
ences between training and testing performance indicate that Genomap effec-
tively bridged the gap between data from different institutions. Genomap’s con-
sistent performance across both training and testing phases, particularly with
diverse data sources, underscores its exceptional generalization ability. The map-
constructing module of Genomap effectively mitigates the impact of differences
arising from distinct data sources, making it a robust solution for predictive
modeling in this context.

3.4 Nomogram Results

Fig. 3 presents the nomogram developed for predicting the probability of
requiring ART in patients, based on Genomap factors and clinical factors. Fig. 3B
presents the training results obtained with the QEH dataset, yielding an AUC
of 95% and an accuracy of 97%. Similarly, Fig. 3C illustrates the testing results
using the QMH dataset, achieving an AUC of 96% and an accuracy of 88%.
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4 Conclusion

Model generalizability across diverse clinical settings is crucial, as variations
in imaging protocols, scanner types, and patient characteristics can undermine
prediction accuracy. This study addresses these challenges using a normalized
partial correlation coefficient matrix and Genomap’s map-constructing module,
outperforming benchmark methods with superior generalizability and predictive
accuracy. By integrating Genomap-derived multi-modality factors with clinical
factors, we developed a nomogram providing individualized ART probability es-
timates for patients. This tool aids clinicians in personalized treatment planning
and optimized radiation strategies. Future research will expand the dataset to
enhance model adaptability across different clinical environments.
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