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Abstract. EEG-based emotion recognition is vital for patients who are
unable to express emotions normally through physical or verbal means.It
can provide essential support for their emotional expression and rehabil-
itation. EEG signals are highly non-stationary, and there is significant
variability in emotional expression among individuals. The Graph Convo-
lutional Network (GCN) has shown excellent performance in EEG signal
feature extraction, but their accuracy in cross-subject scenarios remains
unsatisfactory. In this paper, we propose a Various Attention Mecha-
nism Graph Convolutional Network with Multi-Source Domain Adap-
tation (VAG-MSDA) model for cross-subject EEG emotion recognition.
VAG extracts features through the GCN with various attention mecha-
nism to capture the emotional cognitive attributes of the graph structure
in spectral, local, and global spatial domains, ensuring the richness and
stability of feature information while reducing redundancy. Additionally,
MSDA is used to align the feature distributions and classifiers among
different individuals, further enhancing the model’s generalization abil-
ity. Experiments were conducted on the SEED and SEED-IV datasets.
The results demonstrate that the proposed VAG-MSDA model achieves
significant performance improvements and reaches state-of-the-art per-
formance levels on the SEED-IV dataset. Our code is open-sourced at
https://github.com/e6ut/vag-msdal

Keywords: EEG - Emotion Recognition - Cross-Subject - Attention
Mechanism - Domain Adaptation.

1 Introduction

Depression and autism are serious psychological problems, early diagnosis and
intervention for them are crucial for recovery and preventing deterioration|26].
EEG-based emotion recognition has broad application prospects such as brain-
computer interfaces, affective robotics, mental health assessment. Compared to
traditional subjective assessment methods, it can provide objective and quan-
tifiable physiological indicator data, effectively avoiding biases that arise from
subjective evaluations. Due to its objectivity and non-invasive characteristics,
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EEG-based emotion recognition offers reliable diagnostic evidence for clinicians.
It significantly enhances the efficiency and effectiveness of diagnosis and treat-
ment for psychological and psychiatric disorders.

In recent years, the academic community has achieved some advances in
EEG-based emotion recognition through various methods. Initially, CNNs [12/2]
and RNNs [2II1I] were used for EEG-based emotion recognition. Due to the
non-Euclidean nature of EEG data, these networks often get a low prediction
accuracy. Graph Neural Network (GNN) can address this issue effectively, which
uses graph structures to capture EEG feature information. Furthermore, GCN
combine the advantages of CNN and graph structures, enabling to efficiently ex-
tract features with higher discriminative power. The GCN [18] and the DGCNN
[17] both achieved high recognition accuracy in EEG emotion recognition tasks.
Furthermore, Zhou et al. [25] proposed a Progressive Graph Convolutional Net-
work (PGCN), which combined static and dynamic graph convolutions to extract
static spatial proximity information and dynamic functional connectivity infor-
mation separately. Jin et al. [6] proposed a Pyramidal Graph Convolutional Net-
work (PGCN), aggregating features at three levels: local, mesoscopic, and global
and integrating node features with their 3D positions to construct a numerical
relational adjacency matrix. These approaches have achieved promising results,
demonstrating the effectiveness of GCN in EEG-based emotion feature extrac-
tion. However, overly complex networks and excessively high-dimensional feature
extraction often lead to difficulties in further processing features and issues of
feature redundancy. While these methods perform well in subject-dependent sce-
narios, redundant feature information and individual differences often lead to the
problem of overfitting in cross-subject scenarios.

With the advancement of transfer learning, Domain Adaptation (DA) and
Multi-Source Domain Adaptation (MSDA) have been applied on cross-subject
scenarios [TI9J20/4/T3] and combined with feature extraction networks to solve the
issue of individual differences. Researchers also integrated attention mechanisms
with DA or MSDA to pursue the extraction of domain-invariant features|[5JT0JT9].
Yang et al. [20] introduced an attention mechanism for EEG-based feature ex-
traction and improved MSDA based on attention alignment methods to learn
rich domain-invariant features. Relying solely on attention-based EEG feature
extraction may result in insufficient feature information extraction.

In this paper, we propose a model VAG-MSDA for cross-subject EEG emo-
tion recognition. For addressing the overfitting and transfer difficulty caused
by the significant impact of individual differences, the insufficient spatial infor-
mation extraction due to the non-Euclidean nature of EEG signals. Firstly, we
design an architecture that integrates GCN, various attention feature extractor
(VAFE), and MSDA. The architecture can extract domain-invariant features ef-
fectively. Subsequently, we design the MGAFE Module, which expand the mod-
ule of VAFE to extract features from different local spatial regions to addresses
the issue of insufficient feature extraction. Extensive experiments on SEED and
SEED-IV datasets demonstrate the superiority of our proposed VAG-MSDA.
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Fig. 1. The overall framework of VAG-MSDA.

2 Methods

The overall framework of the proposed method, as illustrated in Fig. [1l VAG-
MSDA comprises two components: 1) the VAG module, which uses a single-
layer GCN for feature extraction and constructs various attention mechanisms
for secondary feature extraction; and 2) the MSDA module, which includes a
feature distribution alignment module to reduce domain discrepancies and a
classifier alignment module to align classifiers across source domains, minimizing
individual differences’ impact on classification.

2.1 Feature extraction

To extract rich and effective features, VAG is employed for feature extraction on
both the source and target domains. The feature extraction process is consistent
for both the source and target domains, therefore, the feature extraction method
described in this section is a general-purpose approach.

Graph Convolutional Feature Extraction (GCFE) Inspired by [6], We
based on the inverse of the squared 3D distance d;; between node ¢ and j to

compute the element of adjacency matrix flij = % (/Lj € [0,1]), where 0 is the
ij
sparsity factor, which is set to 9. A;; € A, A is the adjacency matrix, A € R"*"

and n is the number of EEG channels. A is used to compute the Laplacian matrix
L. The feature H' extracted by l-layer GCN can be get:

H' = LeakyRelu (iHHWlfl) (1)
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Fig. 2. The overall framework of SSAFE.

Where H!~! and H'! are the input and output features at the I-th layer, W!=!
denotes the learnable parameter matrix at the [-th layer, LeakyRelu signifies
the activation function, and L is the Laplacian matrix. The features extracted
through single-layer GCN are denoted as F/ = H'.

Various Attention Feature Extraction (VAFE) The VAFE consists of
two components: 1) the Spectral-Spatial Attention Feature Extractor (SSAFE),
which focuses on extracting domain-invariant features from the spectral domain
and global spatial domain [20]; and 2) the Multi -Scale Graph Attention Feature
Extractor (MGAFE), which focuses on extracting features from the local spatial
domain.

Spectral-Spatial Attention Feature Extractor (SSAFE) As shown in Fig.|2) SSAFE
uses an Attention Module (AM) for feature extraction in the spectral and spatial
domains, which use avg-pooling and max-pooling to generate two vectors: Fy,gq
and F,qz. And then put them through a shared Multi-Layer Perceptron (MLP),
followed by an activation function to generate the attention weights M (F'):

M(F") = Relu(MLP(Avgpool(F")) + MLP(Maxpool(F")))

2
= Relu (W'WOF,pg + W' WOF,42) ?
Where W' and W° denote the learnable parameter matrix, Relu signifies the
activation function.

SSAFE extracts features steps as shown in Fig.[2] where T' denotes transpose.
The extracted features are denoted as F"”.

The Multi-Graph Attention Feature FExtractor (MGAFE) For better extract-
ing features from local spatial domain, We designed two subgraph partitioning
strategies, as illustrated in Fig. [3] Based on the conventional method of divid-
ing brain functional regions, the brain is typically segmented into four main
areas: the frontal lobe, parietal lobe, temporal lobe, and occipital lobe. To meet
the demands for analyzing finer structures and functional connectivity, we ref-
erenced [6] and adopted a partitioning approach that divides the brain into 7
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Fig. 3. Sub-graph partitioning strategies

sub-regions, as shown Fig. Additionally, inspired by [I5], we further refined
the 7 sub-regions partition by expanding it into 16 sub-regions, as depicted in
Fig. which not only simplifies the analysis process but also significantly
enhances spatial resolution and the interpretability of the results.

Based on these two partitioning strategies, MGAFE performs graph pool-
ing operations separately. For each subgraph, the attention-based connectivity
matrix A can be represented as:

A = LeakyRelu ((hWW)(RW)") (3)

Where & is the set of features in subgraph region, W denote the learnable pa-
rameter matrix, LeakyRelu denote activation function.

Then, we use A to aggregate the subgraph features h, which can be get
from m = softmax(A)h. By applying the methods to process the subgraphs
obtained from the two partitioning strategies, we can derive two local spatial
domain features M' € R™X and M? € R'*K where K is the number of
features in each node. Then fuses M' and M? as F"".

Finally, fused the extracted features F’, F” and F"’, as F"

F = concat (F', F", F") (4)

2.2 Multi-Source Domain Adaptation

To effectively mitigate the interference of individual differences on experimental
results, we employ the MSDA method. MSDA is divided into two stages: the
feature alignment stage and the classifier alignment stage.

Feature Alignment Stage To align the feature distributions from a global
perspective, the Maximum Mean Discrepancy (MMD) function is employed to
constrain and reduce the feature distribution differences between the source and
target domains:

Lomd = —Z@(ws’“)——2¢(ﬂctf) (5)

H
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Where z°+ represents the features of k-th source domain, z!/ represents the
features of j-th target domain. ns and n; are the numbers of source domain and
target domain. & is a kernel function.

To better extract domain-consistent features using the SSAFE module, in-
spired by [20], We use an attention alignment loss L4 to reduces the discrepancies

between the features extracted from each source domain and target domain by
SSAFE:

1 &
Ly = TTS ; ‘Msk - Mtl (6)

Where M,, and M, represents the attention weight of the k-th source domain
and the target domain, which get from exponential moving average [3].

Classifier Alignment Stage We use the cross-entropy loss as the classification

loss:
N,

1 & )
Lets = =7 > yilogPs(§:] X:) (7)
S =1

Where y; represents the label of the source domains data, Ns; denotes the number
of samples, and Py (§;|X;) signifies the probability distribution of the predicted
label ;.

Inspired by [20], we average the predict result of target domain from each
sub-classifiers as pseudo-labels of the target domain and compute the pseudo-
labels cross-entropy loss for the target domain:

Ny
»Cpcls = _Nit Zyj log(PQ(QJ|XJ> > T) (8)
j=1
Where y; represents the pseudo-label, NV; denotes the number of target domain
samples, and 7 is the predefined confidence threshold for filtering labels, which
we set to 0.95. Py (9;|X;) represents the probability distribution of the predicted
label ¢; that exceeds the confidence threshold 7.
To reduce minimizes the differences between all classifiers. We use a discrep-
ancy loss to constrain each classifier, which helps to minimize the impact of
individual differences on the training effectiveness of the classifiers:

ns—1 ng

2 t ¢
Liise = m Z Z |Oz(F(xz)) -G (F(xL))| (9)
=1 i=35+1
Where C; and C; denote the classifiers belonging to the i-th and j-th source

domain, F(z!) denotes extracted reduced-dimensional target-domain features.
In summary, the overall loss £ is defined as:

L= »Ccls + )\1['d + )\Z»Cmmd + )\S»Cdisc + )\4£pcls (10)

Where A1, A2, A3 and A4 are the trade-offs to balance the collaborative effect of
constraints terms.



VAG-MSDA 7

3 Experiments

3.1 Datasets and Implementation

SEED The SEED dataset [22] includes EEG data from 15 participants (seven
males and eight females) who watched 15 movie clips designed to elicit three
emotional states: negative, neutral, and positive. For each participant, EEG data
were collected across three distinct sessions, each session comprising 15 trials.
The data were captured using 62 EEG channels and preprocessed across five
frequency bands: J, 0, a, 8 and ~ for each channel. We use the Differential
Entropy (DE) features as the original input features.

SEED-IV The SEED-IV [23] dataset includes EEG data from 15 participants
(seven males and eight females) who watched 24 movie clips designed to elicit
four emotional states: neutral, sad, fear, and happy. For each participant, EEG
data were collected across three distinct sessions, each session comprising 24
trials. Similarly, the differential entropy (DE) feature extract from five frequency
bands as the original input features.

Implementation details In cross-subject EEG emotion recognition experi-
ments, we employ the Leave-One-Out (LOO) method to partition the dataset.
For the SEED dataset, the batch size is 256, and for SEED-IV, it is 64. The
trade-off parameters A1, A2, A3z, and A4 are set to 0.2, 0.3, 0.3, and 0.5 [20],
respectively. During training, the learning rate is set to 0.01, and the number
of epochs is set to 200, with L2 regularization and dropout (rate 0.1) to pre-
vent overfitting. All experiments are done on Linux 64-bit operating system,
the experimental handware device GPU is NVIDIA A30, which driver version is
525.60.13 and the CUDA version is 12.0.

Table 1. Ablation study for different modules on SEED and SEED-IV datasets.

Dataset Methods — [Mean / Std(%)
VAG-MSDA | 92.06 / 6.72
w/o MGAFE | 90.68 / 6.98

SEED  |og AFE-MSDA| 90.11 / 7.32
GON-MSDA | 89.24 / 8.58
VAG-MSDA | 80.41 / 10.06

SEED.Ly| /0 MCAFE | 8018 / 10.36

GCN-MSDA | 79.31 / 11.29
SSAFE-MSDA| 76.23 / 9.02

3.2 Ablation Study

Ablation studies were conducted on two datasets to demonstrate the impact of
each fundamental component of VAG-MSDA, as shown in Table [I} In Table
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VAG-MSDA was the model proposed in this paper, "w/o MGAFE " indicates
the removal of MGAFE module from VAG-MSDA, and " GCN-MSDA " signifies
the model of GCN combined with MSDA, " SSAFE-MSDA " signifies the model
of SSAFE combined with MSDA.

Through the ablation experiments in Table [Ij GCN-MSDA achieved excel-
lent results in the SEED-IV dataset, but due to the limited feature extraction
capacity of single-layer GCN, the results in the SEED dataset were lower than
the SSAFE-MSDA. w/o MGAFE use GCN with SSAFE to extract and fused
features, which preserve feature information richness and low redundancy, so
w/o MGAFE can extract better domain-invariant features. The ablation ex-
periments demonstrated the effectiveness of structural design. Additionally, in
order to extract richer and low redundancy information, the MGAFE module is
designed, and combined with the w/0 MGAFE model to form the AVG-MSDA
model proposed in this paper. Performance improvement demonstrates the effec-
tiveness of the MGAFE module. The VAG-MSDA improves the accuracy from
89.24% to 92.06% in the SEED dataset; and from 76.23% to 80.41% in the
SEED-IV dataset.

3.3 Comparison with SOTA Methods

The proposed VAG-MSDA model is compared with six classical supervised learn-
ing methods and six transfer learning methods using the SEED and SEED-IV
datasets, as shown in Table[2] Compared to supervised learning methods, our ap-
proach employs MSDA to mitigate the impact of individual variability; whereas
compared to transfer learning methods, our designed architecture enables more
comprehensive extraction of domain-invariant features, so the accuracies on both
datasets are significantly improved.

Table 2. Compare with other methods on the SEED and SEED-IV datasets.

Mean / STD(%) Mean / STD(%)

Method " —spED T SEEDIV Method SEED | SEEDIV
Supervised Learning
DGONN [I7][79.05 / 9.02] 52.82 / 9.23| V-IAG [I5] | 8838 /480 | - / -
A-LSTM [I6] - / - |55.03/928| PGCN[6 |84.59 /8.68 | 73.69 /7.16

TAG [14] (86.30 / 6.91|62.64 / 10.25 GMSS [7] 86.52 / 6.22 | 73.48 / 7.41
Transfer Learning
BiDANN |[g8] |84.14 / 6.87| 69.03 / 8.66 UDDA [9] 88.10 / 6.54 | 73.14 / 9.43
RGNN [24] (85.30 / 6.72| 73.84 / 8.02 | MSDA-SFE[M4] | 91.65 / 2.91 | 73.92 / 6.04
IDDA [I] |85.75 / 8.11| 72.36 / 9.43 |[S2A2-MSDA [20]| 90.11 / 7.32 | 76.23 / 9.02
VAG-MSDA 92.06 / 6.72|80.41 / 10.06

4 Conclusion

In this paper, we propose a novel network architecture called VAG-MSDA. The
main idea of VAG-MSDA is to use graph convolution combined with various
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attention mechanism to extract domain-invariant features focused on the spectral
domain, global and local spatial domain under the constraints of MSDA. The
design of this architecture enabling effectively extract domain-invariant features.
Extensive experiments on the SEED and SEED-IV datasets have demonstrated
the effectiveness of the model. The ablation studies are conducted to verify the
effectiveness of both the overall architectural design and the MGAFE module.
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