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Abstract. Asymptomatic neurocognitive impairment (ANI) is an early
stage of HIV-associated neurocognitive disorder. Recent studies have in-
vestigated magnetic resonance imaging (MRI) for ANI analysis, but most
of them rely on single modality, neglecting to utilize complementary in-
formation derived from multiple MRI modalties. For a few multimodal
MRI fusion studies, they usually suffer from “modality laziness”, where
dominant modalities suppress weaker ones due to misalignment and scale
disparities, limiting fusion efficacy. To address these issues, we propose
Uncertainty-aware Multimodal MRI Fusion (UMMF), a novel framework
integrating structural MRI, functional MRI, and diffusion tensor imag-
ing for ANI identification. The UMMF employs modality-specific en-
coders with an uncertainty-aware alternating unimodal training strategy
to reduce modality dominance and enhance feature extraction. More-
over, a random network prediction method is designed to estimate un-
certainty weights for each modality, enabling robust uncertainty-aware
fusion that prioritizes reliable modalities. Extensive experiments demon-
strate UMMF’s superior performance over SOTA methods, achieving sig-
nificant improvements in prediction accuracy. Additionally, our approach
can help identify critical brain regions associated with ANI, offering po-
tential clinical biomarkers for its early intervention. Our code is available
at https://github.com/IsaacKingCzg/IK_MICCAI25_UMMF.

Keywords: HIV-associated ANI · Multimodal MRI fusion · Alternating
unimodal training · Uncertainty weighting.

1 Introduction

Asymptomatic neurocognitive impairment (ANI) is an early stage of HIV-associated
neurocognitive disorder [1]. ANI typically presents with no obvious clinical symp-
toms, but if not identified and treated promptly, it can eventually progress to
HIV-associated dementia, an irreversible stage. Therefore, early diagnosis of ANI
is crucial for timely treatment and disease prevention.

https://github.com/IsaacKingCzg/IK_MICCAI25_UMMF
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Currently, clinical methods for diagnosing ANI primarily rely on using a se-
ries of neurocognitive scales to assess patients [2]. But these assessment methods
have a certain degree of subjectivity, leading to varying interpretations among
clinicians [3]. To address this issue, Magnetic Resonance Imaging (MRI) is in-
creasingly used for ANI analysis, which provides clinicians with an objective
companion diagnostic tool. The commonly used MRI includes structural MRI
(sMRI), functional MRI (fMRI) and diffusion tensor imaging (DTI). And many
studies have investigated brain analysis with these modalities [4,5,6,7,8,9], but
they typically utilize a single modality and ignore cross-modal information de-
rived from multiple MRI modalities.

Recently, the advancement of multimodal fusion [10,11,12,13] techniques has
been developed to further enhance prediction outcomes. For instance, Zhu et
al. [11] used an attention-based method to combine DTI and fMRI for brain
disease diagnosis, while Fang et al. [12] employed attention-based deep learn-
ing techniques to predict ANI by combining sMRI and fMRI. Zhao et al. [14]
conducted neonatal brain development using sMRI, and DTI. However, existing
technologies have some key limitations: (i) For disease prediction tasks, most
methods only consider two MRI modalities, without fully accounting for the
inherent interdependencies among sMRI, fMRI, and DTI, while comprehensive
MRI information is crucial for ANI diagnosis [1]. (ii) Existing multimodal fusion
methods commonly suffer from the issue of modality laziness [15], which occurs
due to imperfect modality alignment and differing data scales, causing the dom-
inant modality to suppress weaker modalities during joint optimization [16,17].
This ultimately prevents the full potential of modality fusion from being realized
[18]. (iii) Most multimodal frameworks treat different modalities equally, over-
looking their varying contributions to ANI prediction and the impact of sample
uncertainty on prediction results.

To address these limitations, we propose Uncertainty-aware Multimodal
MRI Fusion (UMMF), a novel framework integrating sMRI, fMRI, and DTI
for ANI prediction. Specifically, we first extract features from each modality us-
ing separate encoders. Then an uncertainty-aware alternating unimodal training
strategy to ensure independent optimization and reduce modality dominance,
where random network prediction [19] method is introduced to estimate uncer-
tainty weights for each modality, enhancing fusion robustness. Our contributions
are summarized as follows:

– We propose a novel framework, termed UMMF, which integrates sMRI,
fMRI, and DTI for ANI prediction, considering the combined impact of these
modalities.

– We introduce an uncertainty-aware unimodal alternating training method
to address modality laziness, with uncertainty-weighted fusion to improve
robustness.

– We validate our method through extensive experiments and identify brain
regions as potential clinical biomarkers for ANI analysis.
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Fig. 1. Overall framework of our proposed Uncertainty-aware Multimodal MRI
Fusion (UMMF). We design an uncertainty-aware alternating unimodal training strat-
egy based on sMRI, fMRI and DTI, which consists Alternating Unimodal Training
stage and Uncertainty Estimating Weighting stage.

2 Methodology

2.1 Overview

An overview of the proposed Uncertainty-aware Multimodal MRI Fusion for
HIV-associated ANI prediction is illustrated in Fig. 1. We design three differ-
ent encoders for sMRI, fMRI, and DTI, respectively, to ensure that features
from all three modalities are fully extracted. We then design a shared layer for
the three modalities to capture the common features across them. In terms of
training strategy, we design an uncertainty-aware alternating unimodal training
approach, which consists of two stages. In the first stage, only the shared layer
and the encoder of a single modality are updated during each training phase,
addressing the issue of modality laziness. In the second stage, we train the ran-
dom network prediction [19] module to fit the distribution space of the logits
obtained from each modality’s network, estimating the uncertainties of the three
modalities and performing adaptive weighting, which ensures better fusion of the
logits features from all three modalities. Finally, the fused features are input into
a Softmax function for ANI prediction.

2.2 Multimodal Feature Encoding

Structural MRI Feature Encoder. To capture high-resolution anatomical
features, we use a 3D CNN [20], processing T1-weighted sMRI volumes through
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four sequential blocks with 5× 5× 5 convolutions, Leaky ReLU activation, max
pooling, and batch normalization. The resulting 3D feature maps are vectorized
and compressed into a 256-dimensional structural embedding Fs ∈ R256 using
three MLP layers, capturing multi-scale structural patterns from local cortical
thickness to global volumetric changes, providing anatomical correlates for ANI-
related neurodegeneration.

Functional MRI Feature Encoder. To extract hierarchical spatiotemporal
representations from fMRI, we use a hybrid graph-transformer architecture. Af-
ter AAL atlas parcellation (116 ROIs), sliding window segmentation constructs
dynamic functional connectivity graphs based on Pearson correlation. A four-
layer graph isomorphism network (GIN) [21] with squeeze-excitation blocks mod-
els spatial interactions, while a two-head transformer captures temporal dynam-
ics. The final feature vector Ff ∈ R256 is obtained through summation pooling
and three MLP layers, preserving spatial connectivity and temporal transitions
linked to ANI-related disruptions.

Diffusion Tensor Imaging Feature Encoder. We use BrainNet-CNN [22] to
model white matter microstructural changes via structural connectivity matri-
ces. After segmenting the brain into 116 regions-of-interest (ROIs) using the AAL
atlas, a 116×116 fiber density matrix is constructed from DTI tractography. The
encoder processes connectivity patterns with edge-to-edge convolutional blocks,
using orthogonal 1D filters to capture multi-scale features, followed by edge-
to-node spatial aggregation and node-to-graph global pooling. Three fully con-
nected layers with dropout (p = 0.5) project features into a 256-dimensional
vector Fd ∈ R256, preserving hierarchical patterns from local to global con-
nections. This architecture targets HIV-related white matter degeneration with
neuroimaging-optimized learnable filters.

2.3 Uncertainty-Aware Alternating Unimodal Training

In multimodal MRI fusion tasks, joint optimization strategies often allow dom-
inant modalities with richer disease-related information to overshadow weaker
ones [16,17], leading to modality laziness [15]. And most multimodal frame-
works treat all modalities equally, neglecting their different contributions to
ANI prediction. To resolve these, we design an uncertainty-aware alternating
unimodal training method, which consists of two stages: alternating unimodal
training (AUT) stage and uncertainty estimating weighting (UEW) stage. The
first stage aims to independently optimize each modality’s encoder through se-
quential single-modal learning phases. Then the second stage employs the ran-
dom network prediction (RNP) [19] method to perform adaptive uncertainty
weighting.
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Alternating Unimodal Training Stage. Let the full dataset be partitioned
by modality as P = {Ps, Pf , Pd} corresponding to sMRI, fMRI, and DTI, re-
spectively. For modality m, its data is defined as:

Pm = (Xm, Ym) = {(xmn , ymn)}Nn=1, (1)

where N denotes the total number of subjects. We design modality-specific pre-
diction functions as composite mappings:

hm = g ◦ em, (2)

where, em represents the encoder for modality m, while g is a shared single
linear layer across all modalities (Fig. 1). During AUT stage, we perform I
iterations aligned with the subject count N . At each iteration i, we sequentially
optimize the three modalities through dedicated training phases Tm, where m ∈
{sMRI, fMRI,DTI}. For modality m, the objective minimizes:

LTm = E(x,y)∼Pm
[ℓ(g(em(x; θm));ϕ), y] , (3)

where θm and ϕ denote trainable parameters of encoder em and shared layer
g, respectively. This alternating unimodal optimization ensures each encoder
learns discriminative features without interference from dominant modalities, ef-
fectively addressing the “modality laziness” issue. We also apply Recursive Least
Squares correction [15] to orthogonalize the shared layer gradient at each update,
reducing gradient vanishing and preserving cross-modal information.

Uncertainty Estimating Weighting Stage. As shown in Fig. 1, after com-
pleting the AUT stage, the UEW stage estimates modality-specific uncertainties
through RNP modules. For each modality m, the shared layer outputs logits lm,
which are processed by a dedicated RNPm unit. Each RNPm contains a Fitting
Network fψ trained to approximate outputs of a fixed-weight Initialized Network
fϕ with random initialization, aiming to fit the distribution space of lm. The fit-
ting network better approximates low-uncertainty samples in densely populated
regions while struggling with high-uncertainty samples in sparse regions.

We optimize RNPm by minimizing the Mean Squared Error between both
networks’ outputs with L2 regularization:

ψ∗ = argmin
ψ

N∑
n=1

∥fψ(lmn
)− fϕ(lmn

)∥22 + λ∥ψ∥22, (4)

where ψ denote trainable parameters of fψ, and λ controls regularization strength.
For each modality m ∈ {sMRI, fMRI,DTI}, we compute its fusion map um
using the trained RNPm module:

um = ∥fψ(lm)− fϕ(lm)∥22, (5)
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where lower values indicate higher reliability (denser regions in feature space).
Next, we can obtain the weight w for each modality by cross-assigning um:

ws = uf + ud, (6)

where ws is the weights of sMRI. The final fused logits L are obtained through
uncertainty-weighted summation:

L = ws ⊗ ls + wf ⊗ lf + wd ⊗ ld, (7)

where wf and wd are the weights of fMRI and DTI, ⊗ denotes element-wise
multiplication, dynamically scaling each modality’s prediction confidence.

3 Experiment and Discussion

Materials and Image Preprocessing We use the ANID dataset from Beijing
Youan Hospital, consisting of 68 HIV-associated ANI patients and 69 HCs, each
with matching sMRI, fMRI, and DTI data. All sMRI data are preprocessed
with FreeSurfer [23], including bias field correction, motion correction, intensity
normalization, MNI registration, and skull stripping. fMRI data are processed
with DPARSF [24], involving steps such as discarding the first 10 volumes, slice
timing correction, motion correction, bandpass filtering (0.01-0.10 Hz), nuisance
signal removal, MNI normalization, and partitioning into 116 ROIs based on the
AAL atlas. The regional mean fMRI time series are extracted for each subject.
DTI assesses white matter structure by measuring water diffusion, constructing
a 116×116 symmetric fiber length matrix based on tractography and fiber path
similarities.

Experimental Setup We conducted all experiments using a 3-fold cross-
validation, repeated 5 times. The following hyperparameters were used across
all experiments: training was performed for 70 epochs with the Adam optimizer,
a batch size of 6, and a learning rate of 6×10−4. The regularization parameter λ
in Eq. (4) was set to 0.0001. A detailed description of the encoder configurations
is provided in Section 2.2. To ensure a fair comparison, all baseline methods were
tuned using the same procedure, with hyperparameters optimized for optimal
performance under identical conditions.

Competing Methods We use the ANID dataset for ANI vs. HC classification
and compare the proposed UMMF with ten competing methods, including: 1)
DA-MIDL [5] and 2) DL4AD [6], which use DA-MIDL and DL4AD models for
sMRI prediction; 3) GCN [25] and 4) GAT [26], which capture fMRI features us-
ing graph convolutional networks and graph attention networks, respectively; 5)
ConCeptCNN [7] and 6) GCN-A [9], which analyze DTI using convolution-based
and graph neural network-based strategies, respectively; 7) ASFF [12], which
uses an attention-enhanced strategy to fuse fMRI and sMRI; 8) MTAN [11],
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Table 1. Results (%) of UMMF and ten competing methods on ANID dataset.
Method AUC (%) ACC (%) F1 (%) SEN (%) SPE (%) PRE (%)

DA-MIDL 57.29±1.05 56.38±6.12 56.10±11.11 58.73±17.96 59.90±10.29 60.28±1.71
DL4AD 56.72±7.26 56.72±7.26 58.02±5.89 59.86±6.11 52.96±6.40 56.39±6.27
GCN 63.53±8.88 57.70±8.24 58.07±6.54 60.85±15.91 57.59±17.07 59.31±13.04
GAT 65.80±13.10 57.70±13.33 59.81±9.22 63.77±15.52 56.46±28.89 61.65±19.88
ConCeptCNN 61.45±9.53 57.94±11.88 55.69±15.47 55.56±19.57 60.32±4.49 56.53±11.11
GCN-A 60.17±4.23 56.35±2.24 55.83±7.24 57.14±13.47 55.56±11.88 56.44±1.90

ASFF 68.66±5.73 65.24±4.90 63.98±4.85 61.91±6.73 68.57±9.33 66.86±6.25
MTAN 71.50±8.72 65.87±4.89 66.51±5.69 68.25±8.09 63.49±5.94 65.14±4.74
TMF 57.94±2.97 57.75±4.39 55.19±4.98 52.38±7.78 63.49±5.94 58.97±2.91

MaskGNN 72.94±4.12 63.45±6.61 63.17±8.37 64.56±12.79 62.32±5.42 62.47±5.72

UMMF (Ours) 74.35±1.96 69.05±5.83 68.96±6.11 69.05±5.83 73.94±2.24 69.88±5.48

which designs a triplet attention network to fuse fMRI and DTI; 9) TMF [14],
which employs an attention mechanism to fuse DTI and sMRI; 10)MaskGNN
[27], which uses a Masked Graph Neural Network, where sMRI, fMRI, and DTI
features are used as node features. For all methods, we perform three-fold cross-
validation on the dataset and record the average results. Six metrics are used
for evaluation, including area under the ROC curve (AUC), accuracy (ACC),
F1-score (F1), sensitivity (SEN), specificity (SPE), and precision (PRE).

Classification Results Table 1 reports the mean and standard deviation re-
sults of various methods for ANI diagnosis. It can be observed that methods
utilizing three modalities generally outperform those employing only one or two
modalities, demonstrating that fusing information from multiple MRI modal-
ities enhances diagnostic accuracy. Furthermore, our UMMF outperforms an-
other three-modal fusion method (MaskGNN); for instance, UMMF improves
AUC and ACC scores by 1.41% and 5.6%, respectively, while also yielding a
lower standard deviation. This superior performance may be attributed to the
fact that MaskGNN merely concatenates sMRI, fMRI, and DTI features and
feeds them into a GNN—treating each modality equally and training them uni-
formly—which gives rise to the modality laziness problem and consequently re-
sults in suboptimal outcomes.

Ablation Study As shown in the upper part of Table 2 (from UMMF-S to
UMMF-SD), we investigate the influence of each modality on ANI diagnosis,
where S refers to sMRI, F refers to fMRI and D refers to DTI. The results show
that two-modal fusion outperforms single-modality methods, and three-modal
fusion yields the best performance, highlighting the advantages of UMMF in
addressing modality laziness and the necessity of three-modal fusion.

We also investigate the effect of the Uncertainty-aware alternating unimodal
training method: 1) UMMF-oA, which replaces the alternating unimodal train-
ing by joint optimization strategy, and sMRI features, DTI features and fMRI
features are directly concatenated for prediction; 2) UMMF-oR, which removes
RNP module and directly sums the three logits for prediction. As shown in the
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Table 2. Ablation study for the eight variants of the proposed UMMF.
Method AUC (%) ACC (%) F1 (%) SEN (%) SPE (%) PRE (%)

UMMF-S 59.69±5.80 59.85±5.67 59.02±6.75 59.85±5.67 63.44±6.09 59.27±6.76
UMMF-F 67.01±1.22 63.49±4.49 63.40±4.29 63.49±4.49 63.39±11.77 66.28±5.60
UMMF-D 52.59±7.85 56.67±4.25 55.94±4.93 56.67±4.25 66.50±4.02 56.34±5.36
UMMF-SF 67.71±12.47 61.90±10.29 61.99±10.19 61.90±10.29 65.39±11.09 62.73±9.63
UMMF-DF 68.70±1.47 65.08±1.12 65.03±1.06 65.08±1.12 62.28±6.27 66.32±1.71
UMMF-SD 60.53±4.03 60.32±9.59 59.98±9.49 60.32±9.59 57.11±18.83 61.15±8.92

UMMF-oA 52.93±4.35 54.81±5.54 53.97±5.87 54.81±5.54 64.33±11.73 55.28±6.12
UMMF-oR 53.20±3.77 53.17±4.05 53.22±4.00 53.17±4.05 58.33±6.24 53.96±4.11

UMMF(Ours) 74.35±1.96 69.05±5.83 68.96±6.11 69.05±5.83 73.94±2.24 69.88±5.48

lower part of Table 2, removing either module results in a significant perfor-
mance drop, highlighting the critical role of each component in our framework.
The simple concatenation approach based on joint optimization is affected by
modality laziness, causing the subordinate modalities to underperform and limit-
ing the potential of the dominant modality. The strategy of simply summing the
logits fails to account for the varying contributions of each modality, resulting
in heightened sensitivity of the model under uncertainty.

Discriminative Brain Regions. Based on the UMMF multimodal deep learn-
ing model, which integrates Grad-CAM [28] for sMRI and DTI with attention
analysis for fMRI, we successfully validated the thalamus, parahippocampal
gyrus, and cerebellum as cross-modal biomarkers for HIV-associated neurocog-
nitive disorder [29,30,31]. Specifically, (1) the model accurately captured multi-
layer damage features in the thalamus, including structural atrophy, white mat-
ter microstructural abnormalities (reduced MD), and metabolic decline, aligning
with the classical theory of thalamic dysfunction as an “information integration
hub” [29,30]; (2) it revealed a spatiotemporal coupling pattern between parahip-
pocampal atrophy and default network disconnection [31], as well as dynamic
compensatory reorganization in the cerebello-cortical circuitry [31]. This study
demonstrates that UMMF can identify key brain regions associated with ANI,
with interpretable features that align closely with existing unimodal evidence,
further validating the effectiveness of UMMF.

4 Conclusion

In this paper, we introduced an Uncertainty-aware Multimodal MRI Fusion
(UMMF) framework for predicting HIV-associated asymptomatic neurocogni-
tive impairment (ANI). By alternatively training modality-specific encoders for
sMRI, fMRI and DTI, UMMF effectively reduces modality dominance and en-
hances feature extraction using an uncertainty-aware alternating unimodal train-
ing strategy. Our experiments demonstrate that UMMF outperforms other meth-
ods, significantly improving prediction accuracy and identifying ANI-related
brain regions. Future work will focus on exploring disease-specific encoders,
investigating alternative uncertainty estimation methods, and extending the
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Fig. 2. Illustration of brain regions associated with ANI, identified through fMRI (a),
DTI (c), and sMRI (e, f, g) analyses. Panel (b) highlights the overlapping regions of
interest (ROIs) between DTI and fMRI.

framework to other brain diseases to enhance its generalizability and clinical
applicability.
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