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Abstract. Federated Learning (FL) is enabling collaborative model train-
ing across institutions without sharing sensitive patient data. This ap-
proach is particularly valuable in low- and middle-income countries (LMICs),
where access to trained medical professionals is limited. However, FL
adoption in LMICs faces significant barriers, including limited high-
performance computing resources and unreliable internet connectivity.
To address these challenges, we introduce FedNCA, a novel FL sys-
tem tailored for medical image segmentation tasks. FedNCA leverages
the lightweight Med-NCA architecture, enabling training on low-cost
edge devices, such as widely available smartphones, while minimizing
communication costs. Additionally, our encryption-ready FedNCA
proves to be suitable for compromised network communication.
By overcoming infrastructural and security challenges, FedNCA paves
the way for inclusive, efficient, lightweight, and encryption-ready med-
ical imaging solutions, fostering equitable healthcare advancements in
resource-constrained regions. We make our implementation publicly avail-
able at: https://github.com/MECLabTUDA/FedNCA
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1 Introduction

Federated Learning (FL) is rapidly emerging as a transformative approach in
medical imaging [I]. Unlike traditional machine learning methods that rely on
centralized datasets, FL facilitates the collaborative training of models across
multiple institutions without the need to share sensitive patient data [I]. This
makes it particularly appealing for applications in healthcare, where adherence to
stringent data privacy guidelines, such as HIPAA and GDPR, is paramount [2].
Even in low-and-middle-income countries (LMICs) with limited resources and a
shortage of healthcare professionals, FL has the potential to provide access to
high-quality medical AT [3].

While the benefits are evident, the adoption of FL in LMICs is hindered by
several infrastructural and technical challenges [4]. One of the primary barri-
ers in LMICs is the limited access to high-performance computing resources [5],
making it difficult to train deep neural networks and implement traditional FL
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frameworks. Additionally, slow and unreliable internet connections exacerbate
the problem, as the exchange of model updates between clients and servers be-
comes time-intensive and inefficient [6].

In state-of-the-art FL solutions, models are becoming increasingly larger,
with architectures growing more complex [7]. The rising computational demands
necessitate powerful hardware, stable network infrastructures, and substantial
energy resources — requirements that are often inaccessible in resource-constrained
regions [8]. As state-of-the-art FL methods evolve, the risk of exacerbating global
disparities in Al accessibility increases, underscoring the urgency for lightweight,
adaptable, and efficient FL frameworks tailored to LMICs [9].
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Fig. 1: FedNCA a) circumvents problems with low bandwidth internet connec-
tions, b) allows for efficient encryption to protect from adversaries or untrusted
servers, c) is trainable on diverse hardware including smartphones.

To address these challenges, we propose FedNCA, an efficient, lightweight,
and encryption-ready FL system for LMICs (Fig. . Unlike conventional FL
systems that require substantial computational resources and high-bandwidth
connectivity, FedNCA is optimized for deployment in resource-constrained en-
vironments. At its core, FedNCA leverages the Med-NCA backbone [10], which
is inherently lightweight and efficient. This approach allows training on low-cost
edge devices, such as inexpensive smartphones [I1], which are available even in
resource-constrained regions [I2]. Moreover, the NCA architecture has 5000x
fewer parameters than a UNet, thereby lowering communication costs and en-
hancing accessibility in regions with limited internet bandwidth. This not only
significantly cuts operational costs but also democratizes access to cutting-edge
medical Al, allowing broader participation in FL. without the barriers of expen-
sive hardware and network constraints.

Another crucial challenge is the presence of untrusted or even malicious
servers [I3], particularly in rural and remote regions where none of the trusted
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peers can act as servers. In such scenarios, ensuring data privacy and security
becomes a significant concern. Encryption techniques like homomorphic encryp-
tion provide strong privacy protection guarantees, even against untrusted or
malicious servers [14]. However, despite its robust security benefits, homomor-
phic encryption introduces substantial computational overhead [15], which can
vary depending on the size of the message, potentially limiting its practicality
in resource-constrained environments. Due to the lightweight MedNCA architec-
ture, the time required for the encryption and decryption process is reduced by
a factor of 1800 compared to state-of-the-art architectures like TransUnet [16].
By drastically reducing computational overhead, FedNCA provides strong pri-
vacy guarantees, making secure FL more accessible to LMICs. Consequently,
robust privacy protection is no longer exclusive to those with high
computational resources but becomes available in regions that lack powerful
infrastructure.

To address both, the infrastructure and security challenges associated with
FL in LMICs we make the following contributions in this work: 1) We propose
a secure and communication-efficient FL algorithm specifically for NCAs, 2)
We evaluate the trained models in terms of their segmentation performance
and the transmission costs coming up during FL, 3) We study the real-world
applicability on smartphones, and 4) we analyze the efficiency improvement of
the homomorphic encryption on NCAs.

2 Background

Neural Cellular Automata are characterized by their minimal number of pa-
rameters, making them highly efficient compared to traditional neural network
architectures. Med-NCA [10], an NCA-based architecture specifically designed
for medical image segmentation, has demonstrated performance comparable to
conventional neural networks, like the UNet [I7] while utilizing only a small frac-
tion of the parameters. Med-NCA’s efficiency stems from its iterative application
of simple rules. Cellular automata like Conway’s Game of Life are known to be
Turing-complete, demonstrating that complex computations can be achieved
with inherently simple update rules. NCA-based algorithms adapt this idea and
encode the rule in a lightweight neural architecture [I8], which significantly re-
duces hardware requirements compared to large architectures.

Communication Bottlenecks in FL arise due to its star-shaped topology,
where a central server receives updates from multiple clients and then sends ag-
gregated updates back [19]. These updates typically consist of model parameters
or gradients, which are often large in size, leading to significant bandwidth con-
sumption and increased latency [6]. This challenge is especially pronounced in
settings with limited network capacity [20]. To mitigate this issue, various en-
coding and compression techniques have been introduced, such as quantization,
sparsification, and federated dropout, which aim to reduce the size of updates
while maintaining acceptable model performance [21]. However, these methods
come with an inherent trade-off: while they decrease communication costs, they
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may also introduce a performance drop due to the loss of information in the
transmitted updates [22].

3 Methodology

The deployment of secure FL systems in LMICs is often hindered by high com-
munication overhead and computational demands. FedNCA addresses these chal-
lenges by providing an efficient, lightweight, and encryption-ready solution.
These key attributes make FedNCA an ideal solution for resource-constrained
settings. An outline of our FL algorithm can be seen in Fig. 2] and Alg.
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Fig.2: Our FedNCA setup including a) the two-stage Med-NCA backbone, b)
the aggregation of encrypted weights, and c¢) other clients connected via a weak
internet connection.

Efficient: Inspired by Med-NCA, each client trains two NCAs via end-to-
end backpropagation through time (BPTT). In detail, the downsampled (coarse)
image is given to the first stage, which distributes knowledge on a global scale by
running the first NCA f. for Ty = 20 steps. After that, the hidden channels of
the NCA are upscaled and concatenated with the high-resolution (fine) image.
The second stage uses the global knowledge from the previous NCA to refine
the segmentation via a second NCA f  in additional 77 = 40 steps. During the
forward pass, the deep learning engine automatically unrolls the computation of
both NCAs f. and f . along time (steps) to create a computational graph. After
computing the cross-entropy loss .Z, the gradients are propagated back through
time, averaging the gradients of each weight along each time step. Although
BPTT is considered to be slow and inefficient, BPTT for NCAs is the opposite.
As our NCAs are defined by inherently simple functions f, and f , even low-
energy devices like smartphones and tablets can train NCAs.

Lightweight: To further enhance communication efficiency, FedNCA’s lightweight
architecture ensures that clients transmit only small weight updates to the cen-
tral server. With its compact 284KB model size, FedNCA drastically reduces
bandwidth requirements, making it an ideal fit for FL in low connectivity envi-
ronments (Fig. [2|c). This reduces communication costs by nearly 500x compared
to traditional U-Net models, mitigating common FL communication bottlenecks.
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Algorithm 1 FedNCA client and server functions.

— : Encryption function with corresponding key
— f, f : Backbone NCAs with weights ;. and encrypted weights ©,
— Z: Segmentation loss function, n: Learning rate
— z, y: Image = and segmentation target y (for simplicity here only one)
— To,Th: Number of steps for fine and course NCA

ClientUpdate(z, y, {//,}):

{0,0} < o ({0, O}, key) > Decrypt parameters
z < downscale(x)
for each step s = 0...7Ty do
2o f(2)
end for
z +—upscale(z, x)
for each step s = 0...71 do

z 4 [ (2)
end for
— =V . Z(z,y) > Compute loss and update parameters
«— - UV g(l‘7 y)
Return p({", =}, key) to the server > Encrypt and return parameters

ServerUpdate({ /o, 70}, ..., {{/n,n}): > Aggregate parameters from n clients
— (O 4 o+ Oy) > Average encrypted parameters

n

n

Return {¢), (’} to the clients

This enables frequent updates even in low-connectivity environments, making it
highly suitable for deployment in regions with limited internet access.

Encryption-ready: Homomorphic Encryption (HE) offers a quantum-proof
level of security, ensuring privacy preservation even against an untrusted server.
This is particularly crucial in FL where reconstruction [23] or source inference
attacks [24] on client updates may leak private information about the client’s
training data. HE enables secure aggregation by allowing encryption ¢ and de-
cryption ¢! to behave as homomorphisms between plaintext and ciphertext,
thereby satisfying

w(m) * @(ma) = p(my * ma) VYmi,mo € M (1)

where M represents all possible messages and * € {-,+} represents a group
operation, such as addition or multiplication.

As a result, the server can aggregate encrypted client updates without de-
crypting them, effectively eliminating the threat of server-side data leakage at-
tacks. However, a major downside of HE is its high computational cost, which
makes it impractical for large-scale client updates. To mitigate this, FedNCA’s
low number of parameters facilitates seamless homomorphic encryption, mak-
ing FedNCA encryption-ready. In our setup, we utilized the CKKS [25] scheme,
which is specifically designed for floating-point numbers, making it highly suit-
able for FL applications.
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By combining efficiency, lightweight design, and encryption-readiness, FedNCA
provides a scalable and secure FL solution for LMICs, addressing key barriers
to Al adoption in resource-limited settings.

4 Experiments

Ultrasound: The Fetal Abdominal Structures Segmentation [26] dataset in-
cludes nearly 1500 images of fetal abdomen circumference (AC). Ultrasound
images were captured following a standardized protocol, using Siemens Acuson,
Voluson 730 (GE Healthcare Ultrasound), or Philips-EPIQ Elite (Philips Health-
care Ultrasound) systems. For our experiments, we focused on segmenting liver
structures in the images. To create a challenging scenario with limited data per
client, we reserve a random set of 118 (70%) patients for testing. The remaining
51 patients are randomly split among 5 FL clients.

XRay: The MIMIC-IIT [27] dataset consists of chest XRay images of pa-
tients in tertiary care. The segmentation encompasses both the left and right
lungs. In our experiments, we utilize a random subset of 50 images, reserving 25
images for the test set and distributing the other 25 evenly among 5 clients.

Baselines: We compare FedNCA to federated UNet [17] and TransUNets [16],
indicated by Fed UNet, and Fed TransUNet. Additionally, we use quantization
and sparsification methods to reduce the transmission cost in the federated pro-
tocol. Specifically, we quantize the model weights to floating point values with
4-bit precision, indicated by 4-bit. All other weights are encoded in 32-bit pre-
cision. Furthermore, we sparsify the model weights sent to the server by an
unidirectional top-k algorithm [28]. Our algorithm selects only the most im-
portant client parameters, discarding the others. We consider parameters to be
important by their difference to the values they had in the last FL round. We
select the largest k% of parameters to be sent to the server in the upstream.
The server, on the other hand, sends all aggregated parameters to the clients.
We indicate this method by top-k, where k% indicates the number of parameters
sent in each upstream.

Quantitative Scores: We measure the segmentation precision of each method
using the Dice score. The transmission cost measures the amount of data (in
MiB) transferred in each FL round, including the model parameters and the as-
sociated metadata introduced by the quantization or sparsification algorithms.

5 Results

In this section, we present our results when training in low-bandwidth regions.
We investigate runtime when training on affordable hardware, and we measure
runtime for encrypting weights of different segmentation models.

Training in low-bandwidth regions: The quantitative results presented
in Fig. 3| provide insights into the Dice score and transmission costs of the model
parameters. The results demonstrate that FedNCA consistently achieves equal
segmentation quality of 74% and 78% to the baseline models, despite its 2000 x
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Fig. 3: Dice score and transmission cost in MiB. FedNCA achieves the best Dice
while requiring the least transmission cost.

lower communication overhead. To address these high transmission costs, we
apply compression techniques to the U-Net-based approaches. However, even af-
ter compression, the transmission costs remain at least 300x higher than those
of FedNCA, indicating that our method is inherently more efficient without re-
quiring additional compression. Furthermore, the compressed model updates ex-
perience significant performance degradation, revealing a clear tradeoff between
reducing communication costs and maintaining model accuracy. FedNCA, on the
other hand, is much more efficient without any decline in segmentation accuracy.

Training time on inexpensive hardware: We perform a case study to
investigate the trainability of FedNCA on affordable devices. We report the time
taken for training a single epoch on heterogeneous hardware. The results in Fig. [4]
show that training on smartphones and tablets cheaper than 300€ is feasible.

Efficiency of homomorphic encryption: To preserve privacy during fed-
erated training, even in the case of an untrusted server, we encrypt the param-
eters using a homomorphic encryption scheme. In Fig. [5| we report a runtime
analysis of the homomorphic encryption and decryption on FedNCA, UNet, and
TransUNet on a recent Intel CPU. While the encryption scheme adds less than
20 milliseconds for FedNCA, encryption and decryption of the UNet is 1400x
slower, adding 27 seconds to each FL round. For the bigger TransUNet, the run-
time is 1800 longer, rendering FL slow and inefficient, especially for low-cost
computing machinery.
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Motorola Moto G31 (119€) |-
Lenovo Tab P11 (2nd Gen) (234€) |-
Nokia G42 5G (189¢) .
Samsung Galaxy XCover 5 (264€) [
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Fig. 4: Training time per epoch of FedNCA on heterogeneous hardware.
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Fig. 5: Time (in s) taken for homomorphic encryption and decryption of FedNCA,
UNet, and TransUNet on an Intel i7-13700K CPU.

6 Conclusion

In this work, we introduced FedNCA, a FL framework that leverages Neural Cel-
lular Automata-based architecture for efficient, lightweight, and encryption-
ready model training. Our experiments demonstrated robust performance across
two segmentation tasks while showcasing efficient communication, enabled by
the lightweight model architecture. Additionally, the low parameter count al-
lowed the models to be trained on inexpensive smartphones, significantly reduc-
ing the participation burden within this framework. Furthermore, the reduced
number of parameters enhances the efficiency of Homomorphic Encryption, mak-
ing our solution encryption-ready and well-suited for secure, privacy-preserving
applications. Traditional model architectures, such as U-Net and TransUNet,
utilize compression methods to alleviate the communication bottleneck in FL,
making it more accessible in regions with limited internet bandwidth. However,
these compression techniques come with a tradeoff in performance. In contrast,
FedNCA has been shown to be more communication-efficient while outperform-
ing compressed versions of these models. The challenge of using encryption
in traditional solutions arises from the high computational cost of encryption
and decryption. Our results demonstrate that, due to its model architecture,
FedNCA significantly reduces this computational burden, making it encryption-
ready for real-world applications. FedNCA allows equitable participation in Al
training, enabling even low-resource clinics and underrepresented populations to
contribute without the requirement of data sharing. The tiny architecture runs
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on widely available devices, including smartphones, making FL accessible where
traditional models are impractical. By combining efficient segmentation with
federated training, FedNCA ensures Al models benefit from diverse global data,
making high-quality medical Al available to all, regardless of infrastructure or
location.
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